A Note on Renewal Theory for T-iid Random Fuzzy Variables

Dug Hun Hong

Department of Mathematics, Myongji University
Yongin Kyunggido 449-728, South Korea

Copyright © 2016 Dug Hun Hong. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this note, we investigate a classical version of renewal theories in the T-independent and identically distributed random fuzzy variables. For special cases, we consider the case for $T = \text{min}$ and $T = \text{Archimedean}$ t-norm.

Mathematics Subject Classification: 60A86

Keywords: T-iid random fuzzy variables; the law of large numbers; renewal theories

1 Introduction and preliminaries

A number of studies [1-9] have investigated renewal theory in the random fuzzy environment based on the concept of fuzzy variable and random fuzzy variable. Recently, Hong [1] investigated renewal theories in the T-independent random fuzzy environment based on the concept of random fuzzy variable including the cases for $T = \text{min}$ and $T = \text{Archimedean}$ t-norm. In this note, we consider a classical version of renewal theories in the T-iid random fuzzy variables. For special cases, we consider the case for $T = \text{min}$ and $T = \text{Archimedean}$ t-norm.

For basic notations and definitions for fuzzy variables and their T-norm based operations, please refer to the paper [1].

A random fuzzy variable [6] is a function from a possibility space $(\Theta, \mathcal{P}(\Theta), \text{Pos})$ to a collection of random variables \mathcal{F}. The expected value of random fuzzy
variable is defined by Liu and Liu [4] as
\[
E[\xi] = \int_{0}^{\infty} Cr\{\theta \in \Theta | E[\xi(\theta)] \geq r\}dr - \int_{-\infty}^{0} Cr\{\theta \in \Theta | E[\xi(\theta)] \leq r\}dr.
\]

Definition 1 [2]. Random fuzzy variables \(\xi_1, \xi_2, \cdots, \xi_n\) are said to be \(T\)-independent if
(a) \(\xi_1(\theta), \xi_2(\theta), \cdots, \xi_n(\theta)\) are independent random variables for each \(\theta\);
(b) \(E[\xi_1(\cdot)], E[\xi_2(\cdot)], \cdots, E[\xi_n(\cdot)]\) are \(T\)-independent fuzzy variables.

It is noted that for a random fuzzy variables \(\xi\) and a Borel set \(B\) of \(R\), \(P\{\xi(\cdot) \in B\}\) is a fuzzy variable.

Definition 2 [2]. The random fuzzy variables \(\xi\) and \(\eta\) are said to be identically distributed if for any element \(B\) of Borel field \(\mathcal{B}\) of \(R\), \(P\{\xi(\cdot) \in B\}\) and \(P\{\eta(\cdot) \in B\}\) are identically distributed fuzzy variables.

Let \(\Theta\) be a family of probability distribution functions on \(R\) and let \((\Theta, \mathcal{P}(\Theta), Pos)\) be a possibility space and \(\mathcal{F}\) be a family of distributions of random variables. Let \(\xi : \Theta \rightarrow \mathcal{F}\) be a random fuzzy variable. We denote by \(\Theta_1^\infty = \Pi_{n=1}^\infty \Theta\) the space consisting of all infinite sequences of probability distribution functions \((\theta_1, \theta_2, \cdots), \theta_n \in \Theta\) and \(R_1^\infty = \Pi_{i=1}^\infty R\) the space consisting of all infinite sequences \((x_1, x_2, \cdots)\) of real numbers. We take \(B_1^\infty\) to be the Borel \(\sigma\)-field of \(R_1^\infty\). Define a possibility measure \(Pos_1^\infty\) on \(\Theta_1^\infty\) such that for any \(A \subset \Theta_1^\infty\),
\[
Pos_1^\infty\{A\} = \sup_{(\theta_1, \theta_2, \cdots) \in A} T(Pos\{\theta_1\}, Pos\{\theta_2\}, \cdots).
\]
Then \((\Theta_1^\infty, \mathcal{P}(\Theta_1^\infty), Pos_1^\infty)\) is called the \(T\)-product possibility measure of \((\theta_1, \theta_2, \cdots)\).

Let \(P_\theta\) be the probability measure on \(R\) with probability distribution \(\theta\). For each \(\bar{\theta} = (\theta_1, \theta_2, \cdots)\) define a probability measure on \((R_1^\infty, B_1^\infty)\) so that \(P_{\bar{\theta}} = \Pi_{i=1}^\infty P_\theta\), the product probability measure of \(P_\theta, i = 1, 2, \cdots\). Define a process \(\{X_n\}\) on \((R_1^\infty, B_1^\infty)\) such that \(X_n(x_1, x_2, \cdots) = x_n\). By the definition of \(P_{\bar{\theta}}\), the process \(\{X_n\}\) is independent with respect to \(P_{\bar{\theta}}\) and \(\theta_n\) is the probability distribution of \(X_n\). We now define a random fuzzy variables \(\{\xi_n\}\) on \((\Theta_1^\infty, \mathcal{P}(\Theta_1^\infty), Pos_1^\infty)\) such that \(\xi_n(\bar{\theta}) = X_n\) with respect to \(P_{\bar{\theta}}\) and set \(S_0 = 0, S_n = \xi_1 + \xi_2 + \cdots + \xi_n, n = 1, 2, \cdots\). Then, by Theorem 2 [2], the random fuzzy variables \(\xi_n, n = 1, 2, \cdots\) on \((R_1^\infty, B_1^\infty)\) are \(T\)-iid random fuzzy variables and identically distributed with a random fuzzy variable \(\xi\).

2 Random fuzzy renewal theories

From this section, we additionally assume that \(\Theta\) is a set of probability distribution functions such that \(\theta(0) = 0, \theta(0) < 1\). Let \(\xi_n\) denotes the time between
the $(n-1)$th and the nth events, known as the inter-arrival times, $n = 1, 2, \cdots$, respectively. Define
\[
S_0 = 0, \quad S_n = \xi_1 + \xi_2 + \cdots + \xi_n, \quad n \geq 1,
\]

If the inter-arrival times ξ_n, $n = 1, 2, \cdots$ are random fuzzy variables then the process $\{S_n, \ n \geq 1\}$ is called a random fuzzy renewal process.

Let $N(t)$ denotes the total number of the events that have occurred by time t. Then we have
\[
N(t) = \max\{n | 0 < S_n \leq t\}.
\]

For any fixed $\bar{\theta} = (\theta_1, \theta_2, \cdots) \in \Theta^\infty_1$, it is clear that $N(t)(\bar{\theta})$ is a random variable with the probability distribution $P\{N(t)(\bar{\theta}) = n\} = P\{S_n(\bar{\theta}) \leq t\} - P\{S_{n+1}(\bar{\theta}) \leq t\}, n = 1, 2, \cdots,$
where $S_n(\bar{\theta}) = \sum_{i=1}^n \xi_i(\bar{\theta}) = \sum_{i=1}^n X_i$ w.r.t. $P_{\bar{\theta}}$. We call $N(t)$ the random fuzzy renewal variable.

For each $\bar{\theta} \in \Theta^\infty_1$, $E[N(t)(\bar{\theta})]$ is the expected values of the random variables $N(t)(\bar{\theta})$. However, when $\bar{\theta}$ is varied all over in Θ^∞_1, $E[N(t)(\bar{\theta})]$, as a function of $\bar{\theta} \in \Theta^\infty_1$, is fuzzy variable and their α-pessimistic and α-optimistic values can be expressed by
\[
E[N(t)(\bar{\theta})]'_\alpha = \inf\{t \mid \mu_{E[N(t)(\bar{\theta})]}(t) \geq \alpha\},
E[N(t)(\bar{\theta})]''_\alpha = \sup\{t \mid \mu_{E[N(t)(\bar{\theta})]}(t) \geq \alpha\}.
\]

Recently, Hong [1] investigated random fuzzy elementary renewal theories for T-iid random fuzzy variables as follows.

Theorem 1 [1]. Let $\{\xi_n\}$ be a T-iid random fuzzy process on $(\Theta^\infty_1, \mathcal{P}(\Theta^\infty_1), Pos_1^\infty)$ such that $\|E[\xi_1(\bar{\theta})]_\alpha\| < \infty$, $\alpha \in (0, 1]$. Then we have, for $\alpha \in (0, 1]$,
\[
d_H\left(\frac{E[N(t)(\bar{\theta})]_\alpha}{t}, \left[\frac{1}{KE[\xi_1(\bar{\theta})]}\right]_\alpha\right) \to 0 \quad \text{as} \quad t \to \infty.
\]

Corollary 1 [1]. Let $\{\xi_n\}$ be a T-iid random fuzzy process on $(\Theta^\infty_1, \mathcal{P}(\Theta^\infty_1), Pos_1^\infty)$. Suppose that $\|E[\xi_1(\bar{\theta})]_\alpha\| < \infty$, $\alpha \in (0, 1]$ and T is an Archimedean t-norm, then we have, for all $0 < \alpha \leq 1$
\[
d_H\left(\frac{E[N(t)(\bar{\theta})]_\alpha}{t}, \frac{1}{E[\xi_1(\bar{\theta})]_1}\right) \to 0 \quad \text{as} \quad t \to \infty.
\]

Corollary 2 [1]. Let $\{\xi_n\}$ be a T-iid random fuzzy process on $(\Theta^\infty_1, \mathcal{P}(\Theta^\infty_1), Pos_1^\infty)$. Suppose that $\|E[\xi_1(\bar{\theta})]_\alpha\| < \infty$, $\alpha \in (0, 1]$ and $T = min$, then we have, for all $0 < \alpha \leq 1$
\[
d_H\left(\frac{E[N(t)(\bar{\theta})]_\alpha}{t}, \left[\frac{1}{E[\xi_1(\bar{\theta})]}\right]_\alpha\right) \to 0 \quad \text{as} \quad t \to \infty.
\]
A scale density is a density of the form
\[\sigma^{-1} f \left(\frac{x}{\sigma} \right) \]
where \(\sigma > 0 \). The parameter \(\sigma \) is called a scale parameter.

The following lemma is easy to check.

Lemma 1. Let \(f \) be a density function with \(E_f = \int_x x f(x) dx < \infty \). Let \(\theta^\sigma(x) = \int_x^{-\infty} \sigma^{-1} f \left(\frac{y}{\sigma} \right) dy \), then

\[1 - \theta^\sigma(\sigma a) = 1 - \theta^1(a) \]

and

\[\int x d\theta^\sigma(x) = \sigma \int x f(x) dx. \]

Example 1. The followings are examples of scale densities.

Normal density \(N(0, \sigma^2) \):

\[f(x|\sigma^2) = \frac{1}{(2\pi)^{1/2}\sigma} e^{-x^2/2\sigma^2}, \]

Gamma density \(\Gamma(\alpha, \beta) \) (\(\alpha \) fixed):

\[f(x|\alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^\alpha} y^{\alpha-1} e^{-y/\beta} I_{(0,\infty)}(x), \]

Uniform density \(U(0, \beta) \):

\[f(x|\beta) = \frac{1}{\beta} I_{(0,\beta)}(x) \]

\(t \)-distribution with \(\alpha \) degree of freedom \(T(\alpha, \sigma^2) \) (\(\alpha > 0 \) fixed):

\[f(x|\alpha, \sigma^2) = \frac{\Gamma[(\alpha + 1)/2]}{\sigma(\alpha\pi)^{1/2}} \left(1 + \frac{x^2}{\alpha\sigma^2} \right)^{-(\alpha+1)/2} \]

It is noted that a class of scale densities is a totally ordered set with the
stochastic ordering.

In the next result, we assume that \(\Theta \) is a class of scale densities and
\(\mu_{E[\xi_1(\theta)]}(t) \) is a fuzzy number, and consider classical version of renewal theo-
ries for \(T \)-iid random fuzzy variables.

Theorem 2. Let \(\Theta = \{\theta^\sigma|0 < \sigma < \infty\} \) be a class of scale densities of \(f \). Let \(\{\xi_n\} \) be a \(T \)-iid random fuzzy process on \((\Theta_1^\infty, \mathcal{P}(\Theta_1^\infty), Pos_1^\infty)\). If \(E[||E[\xi_1(\theta)]||] < \infty \), then we have

\[\lim_{t\to\infty} \frac{E[N(t)]}{t} = E \left[\frac{1}{K E[\xi_1(\theta)]]} \right]. \]
We need the following lemma.

Lemma 2. Let \(\Theta = \{ \theta^\sigma | 0 < \sigma < \infty \} \) be a class of scale densities of \(f \). Let \(\{ \xi_n \} \) be a \(T \)-i.i.d random fuzzy process on \((\Theta_1^\infty, \mathcal{P}(\Theta_1^\infty), Pos_1^\infty) \). Then, we have

\[
\sup_{t>1} E[N(t)(\bar{\theta}'_\alpha)] \leq C \frac{1}{E[\xi_1(\bar{\theta})]'_\alpha}.
\]

for some constant \(C > 0 \).

Proof Since \(\mu_{E[\xi_1(\bar{\theta})]}(t) \) is fuzzy convex and upper semi continuous and \(\Theta \) is a totally ordered set with the stochastic ordering, for \(\alpha \in (0, 1] \) there exist \(\theta'_\alpha, \theta''_\alpha \in \Theta \) such that

\[
\{ \theta \in \Theta : Pos(\theta) \geq \alpha \} = \{ \theta_1 \in \Theta : \mu_{E[\xi_1(\bar{\theta})]}(t) \geq \alpha \} = \{ \theta \in \Theta : \theta'_\alpha \leq \theta \leq \theta''_\alpha \}.
\]

Then we clearly have

\[
E[N(t)(\bar{\theta}'_\alpha)] \leq [E[N(t)(\bar{\theta})]'_\alpha \leq [E[N(t)(\bar{\theta})]'_\alpha \leq E[N(t)(\bar{\theta}'_\alpha)]
\]

where \(\bar{\theta}''_\alpha = (\theta''_\alpha, \theta''_\alpha, \cdots) \) and \(\bar{\theta}'_\alpha = (\theta'_\alpha, \theta'_\alpha, \cdots) \). Let \(\theta'_\alpha = \theta f_1(\alpha), \theta''_\alpha = \theta f_2(\alpha) \). Then \(f_1(\alpha) \) is bounded increasing function and \(f_2(\alpha) \) is decreasing function such that \(f_1(\alpha) \leq f_2(\alpha) \), since \(\mu_{E[\xi_1(\bar{\theta})]}(t) \) is fuzzy convex. We also note that by Lemma 1,

\[
E[\xi_1(\bar{\theta})]'_\alpha = \int x d\theta f_1(\alpha)(x) = f_1(\alpha)E_f.
\]

We chose \(a > 0 \) such that \(0 < \theta'_\alpha(a f_1(\alpha)) < 1 \) and let \(p_\alpha = 1 - \theta'_\alpha(a f_1(\alpha)) \). Define new inter-arrival times via truncation \(\tilde{X}_n^1 = a f_1(\alpha)I\{ X_n^1 > a f_1(\alpha) \} \). Thus \(\tilde{X}_n^1 = 0 \) with probability \(\theta'_\alpha(a f_1(\alpha)) \) and equals \(a f_1(\alpha) \) with probability \(1 - \theta'_\alpha(a f_1(\alpha)) \). Let \(\tilde{N}(t)(\bar{\theta}'_\alpha) \) denote the counting process obtained by using these new inter-arrival times, it follows that \(N(t)(\bar{\theta}'_\alpha) \leq \tilde{N}(t)(\bar{\theta}'_\alpha), t > 0 \). Letting \(H_n(\bar{\theta}'_\alpha) \) denote the number of arrivals that occurs at time \(n a f_1(\alpha) \), we conclude that \(\{ H_n(\bar{\theta}'_\alpha) \} \) is i.i.d. with a geometric distribution with success probability \(p_\alpha \). Letting \([x]\) denote the smallest integer \(\geq x \), we have the inequality

\[
N(t)(\bar{\theta}'_\alpha) \leq \tilde{N}(t)(\bar{\theta}'_\alpha) \leq H(t)(\bar{\theta}'_\alpha) = \sum_{n=1}^{[t/a f_1(\alpha)]} H_n(\bar{\theta}'_\alpha), t > 0.
\]

Observing that \(p_\alpha = p_1 \) by Lemma 1, and

\[
E(H_t(\bar{\theta}'_\alpha)) = [t/a f_1(\alpha)]E(H_1(\bar{\theta}'_\alpha)) \leq \left(\frac{t}{a f_1(\alpha)} + 1 \right) \frac{1}{p_\alpha} = \frac{t + a f_1(\alpha)}{a f_1(\alpha)p_\alpha}.
\]
we obtain
\[
\frac{E[N(t)(\bar{\theta}_\alpha')]}{t} \leq \left(\frac{t + af_1(\alpha)}{taf_1(\alpha)} \right) \frac{1}{p_1}.
\]
Since \(0 < f_1(\alpha) \leq f_1(1)\), there exist constants \(C_1 > 0\) such that for \(t > 1\),
\[
t + af_1(\alpha) \leq t + af_1(1) = \frac{1}{af_1(\alpha)} + \frac{f_1(1)}{tf_1(\alpha)} \leq C_1 \frac{1}{f_1(\alpha)},
\]
and hence
\[
\frac{E[N(t)(\bar{\theta}_\alpha')]}{t} \leq \frac{C_1 E_f}{p_1} \frac{1}{E[\xi_1(\bar{\theta})]_\alpha'}.
\]

Proof of Theorem 2. We first note that
\[
\frac{E[N(t)]}{t} = \int_0^1 \frac{1}{2} \left(\frac{E[N(t)(\bar{\theta})']}{t} + \frac{E[N(t)(\bar{\theta})'']}{t} \right) d\alpha.
\]
and
\[
E \left[\frac{1}{KE[\xi_1(\bar{\theta})]} \right] = \frac{1}{2} \int_0^1 \left(\left[\frac{1}{KE[\xi_1(\bar{\theta})]} \right]'_\alpha + \left[\frac{1}{KE[\xi_1(\bar{\theta})]} \right]''_\alpha \right) d\alpha.
\]
From Theorem 1, we have that, for \(\alpha \in (0, 1]\),
\[
\lim_{t \to \infty} \frac{E[N(t)(\bar{\theta})']}{t} = \left[\frac{1}{KE[\xi_1(\bar{\theta})]} \right]''_\alpha
\]
and
\[
\lim_{t \to \infty} \frac{E[N(t)(\bar{\theta})'']}{t} = \left[\frac{1}{KE[\xi_1(\bar{\theta})]} \right]'_\alpha.
\]
Hence, it suffices to prove that
\[
\lim_{t \to \infty} \int_0^1 \frac{E[N(t)(\bar{\theta})']}{t} d\alpha = \int_0^1 \left[\frac{1}{KE[\xi_1(\bar{\theta})]} \right]'' d\alpha
\]
and
\[
\lim_{t \to \infty} \int_0^1 \frac{E[N(t)(\bar{\theta})'']}{t} d\alpha = \int_0^1 \left[\frac{1}{KE[\xi_1(\bar{\theta})]} \right]' d\alpha.
\]
By Lemma 2, we have for \(t > 1\),
\[
\int_0^1 \left(\frac{E[N(t)(\bar{\theta})']}{t} \right) d\alpha \leq \int_0^1 \left(\frac{E[N(t)(\bar{\theta})'']}{t} \right) d\alpha \leq \int_0^1 \left(\frac{E[N(t)(\bar{\theta}_\alpha')]}{t} \right) d\alpha
\]
and
\[
\int_0^1 \left(\frac{E[N(t)(\bar{\theta}_\alpha')]}{t} \right) d\alpha \leq C \int_0^1 \frac{1}{E[\xi_1(\bar{\theta})]_\alpha'} d\alpha \leq CE \left\| \frac{1}{E[\xi_1(\bar{\theta})]} \right\|.
\]
Therefore, by Dominated Convergence Theorem, we immediately have the result.

If $T = \min$, we have the following result.

Corollary 3. Let $T = \min$ and $\Theta = \{\theta^\sigma|0 < \sigma < \infty\}$ be a class of scale densities of f. Let $\{\xi_n\}$ be a T-iid random fuzzy process on $(\Theta^\infty, \mathcal{P}(\Theta^\infty), Pos^\infty)$. If $E\|\frac{1}{E[\xi(\theta)]}\| < \infty$, then we have

$$\lim_{t \to \infty} \frac{E[N(t)]}{t} = E \left[\frac{1}{E[\xi(\theta)]} \right].$$

If T is an Archimedean t-norm, we have the following result.

Corollary 4. Let T be an Archimedean t-norm and $\Theta = \{\theta^\sigma|0 < \sigma < \infty\}$ be a class of scale densities of f. Let $\{\xi_n\}$ be a T-iid random fuzzy process on $(\Theta^\infty, \mathcal{P}(\Theta^\infty), Pos^\infty)$. If $E\|\frac{1}{E[\xi(\theta)]}\| < \infty$, then we have

$$\lim_{t \to \infty} \frac{E[N(t)]}{t} = \frac{1}{2} \left(\frac{1}{E[\xi(\theta)]} + \frac{1}{E[\xi(\theta)]'} \right).$$

Example 2. Let $T = (\langle 0, 2/3, T_1 \rangle, \langle 2/3, 1, T_2 \rangle)$ and $\Theta = \{\theta^\sigma|0 < \sigma < \infty\}$ be a class of scale densities of exponential distribution with mean parameter σ with

$$\mu_{E[\xi(\theta)]}(\sigma) = \begin{cases} \sigma^2 & \text{for } \sigma \in [0, 1], \\ 2 - \sigma & \text{for } \sigma \in [1, 2], \\ 0 & \text{otherwise}. \end{cases}$$

Then

$$E[\xi(\theta)]' = \sqrt{\alpha}, E[\xi(\theta)]'' = 2 - \alpha$$

and

$$\frac{1}{E[\xi(\theta)]'} = \frac{1}{2 - \alpha}, \frac{1}{E[\xi(\theta)]''} = \frac{1}{\sqrt{\alpha}}$$

Then

$$\mu_{\frac{1}{E[\xi(\theta)]}}(\sigma) = \begin{cases} \frac{2\sigma - 1}{\sigma^2} & \text{for } \sigma \in [1/2, 1], \\ \frac{1}{\sigma^2} & \text{for } \sigma \in [1, \infty), \\ 0 & \text{otherwise}. \end{cases}$$

We also have

$$[KE[\xi(\theta)]]' = \begin{cases} \sqrt{\frac{2}{3}} & \text{for } \alpha \in [0, 2/3], \\ 1 & \text{for } \alpha \in (2/3, 1], \end{cases}$$

$$[KE[\xi(\theta)]]'' = \begin{cases} \frac{4}{3} & \text{for } \alpha \in [0, 2/3], \\ 1 & \text{for } \alpha \in (2/3, 1]. \end{cases}$$
and hence
\[
\left[\frac{1}{KE[\xi_1(\theta)]]_\alpha} \right]' = \frac{1}{[KE[\xi_1(\theta)]]]'_\alpha} = \begin{cases}
\frac{3}{4} & \text{for } \alpha \in [0, 2/3], \\
1 & \text{for } \alpha \in (2/3, 1].
\end{cases}
\]
\[
\left[\frac{1}{KE[\xi_1(\theta)]]_\alpha} \right]'' = \frac{1}{[KE[\xi_1(\theta)]]]''_\alpha} = \begin{cases}
\sqrt{\frac{3}{2}} & \text{for } \alpha \in [0, 2/3], \\
1 & \text{for } \alpha \in (2/3, 1].
\end{cases}
\]

Then
\[
\mu_{\frac{1}{KE[\xi_1(\theta)]}}(\sigma) = \begin{cases}
\frac{2}{3} & \text{for } \sigma = 1, \\
\frac{3}{4} & \text{for } \sigma \in [3/4, 1) \cup (1, \sqrt{3/2}], \\
0 & \text{otherwise}.
\end{cases}
\]

We have
\[
E \left[\frac{1}{E[\xi_1(\theta)]]} \right] = \int_{0}^{1} \frac{1}{2} \left(\frac{1}{2 - \alpha} + \frac{1}{\sqrt{\alpha}} \right) d\alpha = \frac{1}{2} (2 + \log 2)
\]
and similarly,
\[
E \left[\frac{1}{KE[\xi_1(\theta)]]_\alpha} \right] = \frac{1}{3} \left(\frac{7}{4} + \sqrt{\frac{3}{2}} \right)
\]

If \(T \) be an continuous Archimedean \(t \)-norm, then by Theorem 2
\[
\lim_{t \to \infty} \frac{E[N(t)]}{t} = \frac{1}{3} \left(\frac{7}{4} + \sqrt{\frac{3}{2}} \right).
\]

If \(T = \min \), then by Corollary 3
\[
\lim_{t \to \infty} \frac{E[N(t)]}{t} = \frac{1}{2} (2 + \log 2).
\]

If \(T \) be an Archimedean \(t \)-norm, then by Corollary 4
\[
\lim_{t \to \infty} \frac{E[N(t)]}{t} = 1.
\]

References

Renewal theory for T-iid random fuzzy variables

Received: August 19, 2016; Published: October 16, 2016