Computation of Eigenvalues
of Discrete Lower Semibounded Operators

Sergey I. Kadchenko

Applied Mathematics and Computer Science Department
Nosov Magnitogorsk State Technical University
Magnitogorsk, Russian Federation

Galiya A. Zakirova

Department of Equations of Mathematical Physics
South Ural State University
Chelyabinsk, Russian Federation

Copyright © 2015 Sergey I Kadchenko and Galiya A. Zakirova. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Based on the Galerkin method, the formulas for eigenvalues of discrete lower semibounded operators were obtained. Numerical experiments demonstrated high accuracy and computational efficiency of them.

Mathematics Subject Classification: 47A55, 47A75

Keywords: asymptotics of eigenvalues; perturbed operator; resolvent method; Galerkin method

1 Introduction

Based on the method of regularized traces a noniterative method was developed [1] – [6]. This method enables us to compute eigenvalues of perturbed discrete lower semibounded operators.

Take a discrete lower semibounded operator T and a bounded operator P on a separable Hilbert space H. Assume that the eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$ and
orthonormal eigenfunctions \(\{v_n\}_{n=1}^{\infty} \) of \(T \) are available and enumerate them in the ascending order of \(\lambda_n \), taking their multiplicities \(\nu_n \) into account. Denote by \(n_0 \) the number of distinct eigenvalues \(\lambda_n \) lying inside the circle \(T_{n_0} \) of radius \(\rho_{n_0} = \frac{|\lambda_{n_0} + 1 + \lambda_{n_0}|}{2} \) centered at the origin. Enumerate as \(\{\mu_n\}_{n=1}^{\infty} \) the eigenvalues of the operator \(T + P \) in the ascending order of their real parts, taking into account their algebraic multiplicities.

If \(q_n = \frac{2\|P\|}{|\lambda_n + e_n - \lambda_n|} < 1 \) for all \(n \in \mathbb{N} \) and the system of eigenfunctions \(\{v_n\}_{n=1}^{\infty} \) of \(T \) constitutes an orthonormal basis of \(H \) then \(m_0 = \sum_{n=1}^{n_0} \nu_n \) and we can calculate the eigenvalues \(\{\mu_n\}_{n=1}^{m_0} \) of \(T + P \) as

\[
\mu_n = \lambda_n + (Pv_n, v_n) + \tilde{\delta}(n), \quad n = 1, m_0,
\]

where \(\tilde{\delta}(n) = \delta(n) - \delta(n-1) \) with \(\delta(n) = \sum_{k=1}^{n} [\mu_k - \tilde{\mu}_k(n)] \) and \(\tilde{\mu}_k(n) \) is the \(n \)-th Galerkin approximation to the corresponding eigenvalue \(\mu_k \) of \(T + P \). For \(\tilde{\delta}(n) \) we have the estimates

\[
|\tilde{\delta}(n)| \leq (2n - 1) \rho_n \frac{q^2}{1 - q}, \quad q = \max_{n \in \mathbb{N}} q_n
\]

The method of regularized traces was the basis of many successful studies, including studies of eigenvalue problem in the stochastic models\[7\]. Unfortunately, restrictions on the norm of the perturbing operator limits the usefulness of this method and as a consequence formulas (2). Further investigations showed that we can remove the restrictions on the norm if we use the Galerkin method.

2 The Formulas of the Eigenvalues of Discrete Lower Semibounded Operators

Consider a discrete lower semibounded operator \(L \) on a separable Hilbert space \(H \). We determine the eigenvalues \(\mu \) when finding the solutions of the operator equation

\[
Lu = \mu u
\]

satisfying certain homogeneous boundary conditions.

To find the eigenvalues of \(L \), we use the Galerkin method. Introduce a sequence \(\{H_n\}_{n=1}^{\infty} \) of finite-dimensional spaces \(H_n \subseteq H \) which is complete \(H \). Assume available an orthonormal basis for \(H_n \) consisting of some functions \(\{\varphi_k\}_{k=1}^{n} \) satisfying all boundary conditions of the problem. Following the Galerkin method, we seek an approximate solution to the spectral problem (3) in the form

\[
u_n = \sum_{k=1}^{n} a_k(n) \varphi_k.
\]
Theorem 2.1 Consider a discrete lower semibounded operator L on a separable Hilbert space H. If the system of coordinate functions $\{\varphi_k\}_{k=1}^{\infty}$ constitutes a basis for H then the Galerkin method constructed from this system of functions and applied to the problem of finding the eigenvalues of the spectral problem (3) converges.

Theorem 2.2 Consider a discrete lower semibounded operator L acting on a separable Hilbert space H. If the system of coordinate functions $\{\varphi_k\}_{k=1}^{\infty}$ constitutes an orthonormal basis for H then

$$\tilde{\mu}_k(n) = (L\varphi_n, \varphi_n) + \delta_n,$$

where $\delta_n = \sum_{k=1}^{n-1} [\tilde{\mu}_k(n-1) - \tilde{\mu}_k(n)]$ and $\tilde{\mu}_k(n)$ is the nth Galerkin approximation to the corresponding eigenvalue μ_k of L.

Proof. Inserting (4) into (3) yields

$$\sum_{k=1}^{n} a_k(n) L\varphi_k = \bar{\mu}(n) \sum_{k=1}^{n} a_k(n) \varphi_k.$$

The coefficients $\{a_k(n)\}_{k=1}^{n}$ are determined from the requirement that the left-hand side here be orthogonal to the functions $\{\varphi_l\}_{l=1}^{n}$, which leads to the system of linear equations

$$\sum_{k=1}^{n} a_k(n) \left\{ \bar{\mu}(n) \delta_{k,l} - (L\varphi_k, \varphi_l) \right\} = 0, \quad l = 1, n$$

on the coefficients $\{a_k(n)\}_{k=1}^{n}$, where $\delta_{k,l}$ is the Kronecker symbol. Setting its determinant equal to zero, we arrive at the equation

$$\det \left(A - \bar{\mu}(n) E \right) = 0,$$

which defines the approximate values of the first n eigenvalues $\{\tilde{\mu}_k(n)\}_{k=1}^{n}$ of L. Here E is the $n \times n$ identity matrix and $A = (a_{kl})_{k,l=1}^{n}$ is the $n \times n$ matrix with $a_{kl} = (L\varphi_k, \varphi_l)$.

It is known that the eigenvalues $\{\tilde{\mu}_k(n)\}_{k=1}^{n}$ of A satisfy

$$\sum_{k=1}^{n} \tilde{\mu}_k(n) = SpA,$$

which yields

$$\sum_{k=1}^{n} \tilde{\mu}_k(n) = \sum_{k=1}^{n} a_{kk}.$$
Introducing \(\mu_k = \bar{\mu}_k(n) + \varepsilon_k(n) \), we have
\[
\sum_{k=1}^{n} \mu_k = \sum_{k=1}^{n} [a_{kk} + \varepsilon_k(n)].
\] (7)

Subtracting (6) for \(n - 1 \), namely,
\[
\sum_{k=1}^{n-1} \mu_k = \sum_{k=1}^{n-1} [a_{kk} + \varepsilon_k(n - 1)],
\] (8)
from (7), we infer that
\[
\bar{\mu}_n(n) = (L\varphi_n, \varphi_n) + \sum_{k=1}^{n-1} [\bar{\mu}_k(n - 1) - \bar{\mu}_k(n)].
\]

This justifies the theorem.

Observe that to obtain (5) we used the diagonal elements \(a_{kk} = (L\varphi_k, \varphi_k) \) for \(k = 1, n \) of the square matrix \(A = (a_{kl})_{k,l=1}^{n} \). For small \(n \) the error of finding the eigenvalues \(\{\bar{\mu}_k\}_{k=1}^{n} \) can be significant; consequently, we should apply (5) with care. If the requirements of Theorem 1 are fulfilled then the Galerkin method converges; therefore, as \(n \) grows, the calculation of \(\bar{\mu}_n \) using (5) becomes more accurate. In addition, we can calculate the approximate eigenvalues \(\tilde{\mu}_n \) of \(L \) using (5) starting at an arbitrary desired index \(n \) since the values with smaller indices are avoided.

It can be shown that if \(L = T + P \) and \(\|P\| < 0, 5|\lambda_{n+\nu_n} - \lambda_n| \), \(\forall n \in \mathbb{N} \), then formulas (1) and (5) coincide.

3 Numerical experiments

We applied our method to calculate by (5) the eigenvalues of the spectral problem
\[
\begin{cases}
Lu \equiv -u'' + P(x)u = \mu u, & a < x < b; \\
\cos \alpha \ u'(a) + \sin \alpha \ u(a) = 0; \\
\cos \gamma \ u'(b) + \sin \gamma \ u(b) = 0, & \alpha, \gamma \in [0, 2\pi],
\end{cases}
\] (9)

Here \(L \) is an operator acting in \(L_2[a,b] \), and operator \(P \) is bounded. In this case \(L \) is a discrete lower semibounded operator.

Let \(\{\varphi_k\}_{k=1}^{n} \) be an orthonormal system of coordinate functions, satisfying (9).

\(T \) is a selfadjoint operator whose eigenvalues \(\{\lambda_k\}_{k=1}^{\infty} \) are the roots of the transcendental equation
\[
[\sin \alpha \sin(\sqrt{\lambda}a) + \sqrt{\lambda} \cos \alpha \cos(\sqrt{\lambda}a)][\sin \gamma \cos(\sqrt{\lambda}b) - \sqrt{\lambda} \cos \gamma \sin(\sqrt{\lambda}b)] +
\]
Calculation of eigenvalues of discrete lower semibounded operators

\[+[\sqrt{\lambda} \cos \alpha \sin(\sqrt{\lambda} a) - \sin \alpha \cos(\sqrt{\lambda} a)][\sin \gamma \sin(\sqrt{\lambda} b) + \sqrt{\lambda} \cos \gamma \cos(\sqrt{\lambda} b)] = 0. \]

The corresponding eigenfunctions \(\varphi_k \) are

\[\varphi_k(s) = C_k \{ [\sin \alpha \sin(\sqrt{\lambda_k} a) + \sqrt{\lambda_k} \cos \alpha \cos(\sqrt{\lambda_k} a)] \cos(\sqrt{\lambda_k} s) + \\
+ [\sqrt{\mu_k} \cos \alpha \sin(\sqrt{\lambda_k} a) - \sin \alpha \cos(\sqrt{\lambda_k} a)] \sin(\sqrt{\lambda_k} s) \}, \quad k = 1, \infty. \]

We can determine the constants \(C_k \) from the normalization condition.

Let us compare the results calculating the eigenvalues \(\tilde{\mu}_k(n) \) of the Sturm–Liouville spectral problem (9) using (5) and the Galerkin method. Denote them by \(\tilde{\mu}_k(n) \) and \(\hat{\mu}_k(n) \) respectively.

Experiment 1. Let \(P \) be an operator of multiplication by the function \(p \).

Table 1 presents an example of calculating the eigenvalues of (9) for \(a = 1, b = 3, \alpha = \pi/5, \gamma = \pi/7, p(x) = x^2 - 10x + 11 + (3x^2 - 10x + 9)i \).

We made the calculations on assuming that \(\tilde{\mu}_k(n) - \hat{\mu}_k(n - 1) = 0 \) for \(k = 1, 51, n = 51 \).

Table 1

| \(k \) | \(\tilde{\mu}_k(51) \) | \(\hat{\mu}_k(51) \) | \(|\hat{\mu}_k(51) - \hat{\mu}_k(51)| \) |
|--------|-----------------|-----------------|-----------------|
| 1 | \(-3.745674 + 2.940862i\) | \(-4.310179 + 3.541650i\) | \(8.243854 \cdot 10^{-1} \) |
| 2 | \(4.637443 + 2.247669i\) | \(4.802715 + 1.985491i\) | \(3.100431 \cdot 10^{-1} \) |
| 3 | \(17.153279 + 2.110610i\) | \(17.260760 + 2.002740i\) | \(1.522638 \cdot 10^{-1} \) |
| 4 | \(34.487259 + 2.062302i\) | \(34.553462 + 2.006407i\) | \(8.664421 \cdot 10^{-2} \) |
| ... | ... | ... | ... |
| 12 | \(350.385311 + 2.006931i\) | \(350.392348 + 2.001575i\) | \(8.844251 \cdot 10^{-3} \) |
| 13 | \(412.071642 + 2.005900i\) | \(412.077633 + 2.001356i\) | \(7.522824 \cdot 10^{-3} \) |
| 14 | \(478.692507 + 2.005093i\) | \(478.697670 + 2.001177i\) | \(6.480353 \cdot 10^{-3} \) |
| 15 | \(550.247973 + 2.004436i\) | \(550.252465 + 2.001032i\) | \(5.638965 \cdot 10^{-3} \) |
| ... | ... | ... | ... |
| 31 | \(2366.259503 + 2.001039i\) | \(2366.260553 + 2.000234i\) | \(1.313989 \cdot 10^{-3} \) |
| 32 | \(2521.705853 + 2.000975i\) | \(2521.706839 + 2.000234i\) | \(1.233034 \cdot 10^{-3} \) |
| 33 | \(2682.086999 + 2.000917i\) | \(2682.087925 + 2.000220i\) | \(1.159348 \cdot 10^{-3} \) |
| 34 | \(2847.402940 + 2.000815i\) | \(2847.403813 + 2.000208i\) | \(1.092060 \cdot 10^{-3} \) |
| ... | ... | ... | ... |
| 48 | \(5679.979950 + 2.000433i\) | \(5679.980371 + 2.000116i\) | \(5.272798 \cdot 10^{-4} \) |
| 49 | \(5919.317870 + 2.000416i\) | \(5919.318364 + 2.000043i\) | \(6.123044 \cdot 10^{-4} \) |
| 50 | \(6163.590609 + 2.000399i\) | \(6163.590374 + 2.000449i\) | \(2.528352 \cdot 10^{-4} \) |
| 51 | \(6412.798139 + 2.000384i\) | \(6412.818701 + 1.985049i\) | \(2.565019 \cdot 10^{-2} \) |

It is clear from Table 1 that as the index \(k \) of the eigenvalue grows, the corresponding quantities \(|\tilde{\mu}_k(n) - \hat{\mu}_k(n)| \) decrease, with the exception of the last
row for $k = 51$. The jump of value $[\bar{\mu}_{51}(51) - \hat{\mu}_{51}(51)]$ in Table 1 is connected with computing errors when we find $\hat{\mu}_{51}(51)$ by Galerkin method.

Experiment 2. Let P be an integral operator:

$$Pu \equiv \int_{a}^{b} g(s)u(s)ds, \ g \in L_2[a, b].$$

Table 2 presents an example of calculating the eigenvalues of (9) for $a = 1$, $b = 3$, $\alpha = \pi / 5$, $\gamma = \pi / 7$, $g(s) = s^2 - 10s + (s^4 + 31s^2 - 10)i$. We made the calculations on assuming that $\bar{\mu}_k(n) - \mu_k(n-1) = 0$ for $k = 1, 71, n = 71$. It is clear from Table 2 that as the index k of the eigenvalue grows, the corresponding quantities $|\bar{\mu}_k(n) - \mu_k(n)|$ decrease.

Table 2

| k | $\bar{\mu}_k(71)$ | $\bar{\mu}_k(71)$ | $|\bar{\mu}_k(71) - \hat{\mu}_k(71)|$ |
|-----|------------------|------------------|----------------------------------|
| 1 | 5,379518 + 21,624568i | 5,342937 + 21,580928i | 5,694416 \cdot 10^{-2} |
| 2 | 37,536748 - 0,204934i | 37,605698 - 0,132883i | 1,44705 \cdot 10^{-1} |
| 3 | 86,813778 + 0,227059i | 86,762476 + 0,199216i | 5,837055 \cdot 10^{-2} |
| 4 | 155,916154 + 0,012057i | 155,917850 - 0,011658i | 1,742831 \cdot 10^{-3} |
| \ldots | \ldots | \ldots | \ldots |
| 12 | 1419,213558 - 0,000146i | 1419,213560 - 0,000146i | 2,260431 \cdot 10^{-6} |
| 13 | 1665,953372 + 0,000628i | 1665,953364 + 0,000625i | 8,31796 \cdot 10^{-6} |
| 14 | 1932,432579 - 0,000079i | 1932,432590 - 0,000079i | 8,944562 \cdot 10^{-7} |
| 15 | 2218,650922 + 0,000354i | 2218,650919 + 0,000353i | 3,518841 \cdot 10^{-6} |
| \ldots | \ldots | \ldots | \ldots |
| 31 | 9482,679042 + 0,000019i | 9482,679042 + 0,000019i | 4,499317 \cdot 10^{-8} |
| 32 | 10104,464107 - 0,00003i | 10104,464107 - 0,00003i | 6,241168 \cdot 10^{-9} |
| 33 | 10745,988379 + 0,000015i | 10745,988379 + 0,000015i | 3,091531 \cdot 10^{-8} |
| 34 | 11407,251864 - 0,000024i | 11407,251864 - 0,000024i | 4,337437 \cdot 10^{-9} |
| \ldots | \ldots | \ldots | \ldots |
| 48 | 22737,557620 - 0,000001i | 22737,557620 - 0,000001i | 5,475590 \cdot 10^{-10} |
| 49 | 23694,909243 + 0,000003i | 23694,909243 + 0,000003i | 2,882942 \cdot 10^{-9} |
| 50 | 24672,000075 - 0,000000i | 24672,000075 - 0,000000i | 4,285883 \cdot 10^{-10} |
| 51 | 25668,830116 + 0,000003i | 25668,830116 + 0,000003i | 2,267648 \cdot 10^{-9} |

Numerous calculations for various values of the parameters $a, b, c, d, \alpha, \beta, p, g$ demonstrated high accuracy and computational efficiency of our formula (5) for the eigenvalues of the spectral problem (9).

References

[1] V.A. Sadovnichii, V.V. Dubrovskii, S.I. Kadchenko and V.F. Kravchenko, Computation of Lower Eigenvalues of the Boundary Value Problem on the

Received: October 18, 2015; Published: February 2, 2016