Common Fixed Point Theorems for Non-compatible Properties Using Implicit Functions on IFMS

Jong Seo Park

Department of Mathematics Education
Chinju National University of Education
Jinju 660-756, Korea

Copyright © 2016 Jong Seo Park. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we prove a common fixed point theorems for non-compatible and discontinuous maps in an IFMS with implicit functions. We improve, extend and generalize the results and methods of Sharma [8] and Park [6].

Mathematics Subject Classification: 46S40, 47H10, 54H25

Keywords: k-weakly commuting map, implicit function, non-compatible map

1. Introduction

In 1965, Zadeh [10] introduced the concept of fuzzy sets as a new way to represent vagueness in our life. George and Veeramani [1], Kaleva and Seikkala[4], Kramosil and Michalek [3] have introduced the concept of fuzzy metric spaces in different methods. Many authors have studied the fixed point theory in these fuzzy metric spaces([1],[7]). Junck [2] established common fixed point theorem for commuting maps.

Park et al. [5] defined the concept of IFMS, and proved the fixed point theorems in an IFMS. Also, Park [6] studied some common fixed point theorems for the weakly commuting maps on IFMS.

1This paper is supported by the Chinju National University of Education Research Fund in 2015.
In this paper, we prove a common fixed point theorems for non-compatible and discontinuous properties using implicit functions in an IFMS. We improve, extend and generalize the methods and results of Park [6] and Sharma [8].

2. Preliminaries

Let us recall (see [9]) that a continuous $t-$norm is a binary operation $*: [0, 1] \times [0, 1] \to [0, 1]$ which satisfies the following conditions: (a) $*$ is commutative and associative; (b) $*$ is continuous; (c) $a * 1 = a$ for all $a \in [0, 1]$; (d) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ $(a, b, c, d \in [0, 1])$.

Similarly, a continuous $t-$conorm is a binary operation $\diamond : [0, 1] \times [0, 1] \to [0, 1]$ which satisfies the following conditions: (a) \diamond is commutative and associative; (b) \diamond is continuous; (c) $a \diamond 0 = a$ for all $a \in [0, 1]$; (d) $a \diamond b \geq c \diamond d$ whenever $a \leq c$ and $b \leq d$ $(a, b, c, d \in [0, 1])$.

Definition 2.1. ([5]) The 5-tuple $(X, M, N, *, \diamond)$ is said to be an intuitionistic fuzzy metric space (shortly, IFMS) if X is an arbitrary set, $*$ is a continuous $t-$norm, \diamond is a continuous $t-$conorm and M, N are fuzzy sets on $X^2 \times (0, \infty)$ satisfying the following conditions; for all $x, y, z \in X$, such that

(a) $M(x, y, t) > 0$,
(b) $M(x, y, t) = 1 \iff x = y$,
(c) $M(x, y, t) = M(y, x, t)$,
(d) $M(x, y, t) * M(y, z, s) \leq M(x, z, t + s)$,
(e) $M(x, y, \cdot) : (0, \infty) \to (0, 1]$ is continuous,
(f) $N(x, y, t) > 0$,
(g) $N(x, y, t) = 0 \iff x = y$,
(h) $N(x, y, t) = N(y, x, t)$,
(i) $N(x, y, t) \diamond N(y, z, s) \geq N(x, z, t + s)$,
(j) $N(x, y, \cdot) : [0, \infty) \to [0, 1]$ is continuous.

Note that (M, N) is called an intuitionistic fuzzy metric on X. The functions $M(x, y, t)$ and $N(x, y, t)$ denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

Definition 2.2. ([6]) Let X be an intuitionistic fuzzy metric space.

(a) $\{x_n\}$ is called a Cauchy sequence if for each $\epsilon > 0$, $t > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$M(x_m, x_n, t) > 1 - \epsilon, \quad N(x_m, x_n, t) < \epsilon$$

for all $m, n \geq n_0$, where \mathbb{N} is the set of natural numbers.

(b) $\{x_n\}$ is called a Cauchy sequence if

$$\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1, \quad \lim_{n \to \infty} N(x_{n+p}, x_n, t) = 0.$$

(c) $\{x_n\}$ is said to be convergent to a point $x \in X$ if, for all $t > 0$,

$$\lim_{n \to \infty} M(x_n, x, t) = 1, \quad \lim_{n \to \infty} N(x_n, x, t) = 0.$$

(d) X is complete if and only if every Cauchy sequence converges in X.
Definition 2.3. ([6]) Let X be an IFMS and let f, g be self maps of X.

(a) The maps f and g are said to be compatible if

\[
\lim_{n \to \infty} M(fgx_n, gfx_n, t) = 1, \quad \lim_{n \to \infty} N(fgx_n, gfx_n, t) = 0
\]

for all $t > 0$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = z$ for some $z \in X$.

(b) (f, g) is said to be weakly commuting if, for all $x \in X$ and $t > 0$,

\[
M(fgx, gfx, t) \geq M(fx, gx, t), \quad N(fgx, gfx, t) \leq N(fx, gx, t).
\]

(c) (f, g) is said to be k-weakly commuting if there exists some $k > 0$ such that, for all $x \in X$ and $t > 0$,

\[
M(fgx, gfx, t) \geq M(fx, gx, \frac{t}{k}), \quad N(fgx, gfx, t) \leq N(fx, gx, \frac{t}{k}).
\]

(d) (f, g) is said to be type(A_f) k-weakly commuting if there exists some $k > 0$ such that, for all $x \in X$ and $t > 0$,

\[
M(fgx, gfx, t) \geq M(gx, fx, \frac{t}{k}), \quad N(fgx, gfx, t) \leq N(gx, fx, \frac{t}{k}).
\]

(e) (f, g) is said to be type(A_g) k-weakly commuting if there exists some $k > 0$ such that, for all $x \in X$ and $t > 0$,

\[
M(gfx, ffx, t) \geq M(gx, fx, \frac{t}{k}), \quad N(gfx, ffx, t) \leq N(gx, fx, \frac{t}{k}).
\]

(f) A point $x \in X$ is called a coincidence point of f and g if and only if $fx = gx$.

Example 2.4. Let $X = [0, 2]$ with the metric d defined by $d(x, y) = |x - y|$. For each $t \in (0, \infty)$, define for $x, y \in X$, $M(x, y, t) = \frac{t}{t + d(x, y)}$, $N(x, y, t) = \frac{d(x, y)}{t + d(x, y)}$, $M(x, y, 0) = 0$, $N(x, y, 0) = 1$, then M, N are IFM on X where is defined by $a \ast b = \min\{a, b\}$, $a \diamond b = \max\{a, b\}$.

Define $f, g : X \to X$ by

\[
f \left(\begin{array}{cc}
x & \text{if } x \in [0, \frac{1}{4}), \\
\frac{1}{4} & \text{if } x \geq \frac{1}{4},
\end{array} \right. \quad gx = \frac{x}{1+x} \text{ for all } x \in [0, 2].
\]

Consider the sequence $\{x_n = \frac{1}{3} + \frac{1}{n}\}_{n \geq 1}$ in X. Then $\lim_{n \to \infty} fx_n = \frac{1}{4}$, $\lim_{n \to \infty} gx_n = \frac{1}{4}$, but

\[
\lim_{n \to \infty} M(fgx_n, gfx_n, t) = \frac{t}{t + |\frac{1}{4} - \frac{1}{5}|} \neq 1,
\]

\[
\lim_{n \to \infty} N(fgx_n, gfx_n, t) = \frac{|\frac{1}{4} - \frac{1}{5}|}{t + |\frac{1}{4} - \frac{1}{5}|} \neq 0.
\]
Thus f and g are non-compatible maps. If taking $t = 1$ and $x = \frac{1}{5}$, then

$$M(fg(\frac{1}{5}), gg(\frac{1}{5}), t) = \frac{1}{1 + |\frac{1}{6} - \frac{1}{7}|} = \frac{42}{43},$$

$$N(fg(\frac{1}{5}), gg(\frac{1}{5}), t) = \frac{|\frac{1}{6} - \frac{1}{7}|}{1 + |\frac{1}{6} - \frac{1}{7}|} = \frac{1}{43}$$

and $M(fx, gx, \frac{1}{k}) = \frac{30}{30+k}$, $N(fx, gx, \frac{1}{k}) = \frac{k}{30+k}$. Hence for $k \geq \frac{5}{7}$, f and g are type(A_f) k-weakly commuting at $x = \frac{1}{5}$.

3. Main Results

Theorem 3.1. Let X be an IFMS with $t * t \geq t$, $t \circ t \leq t$ for all $t \in [0, 1]$ and let f, g be self maps such that f and g are type(A_f) k-weakly commuting maps or type(A_g) k-weakly commuting maps at coincidence points and satisfying the following conditions: for all $x, y \in X$,

(1) $M(fx, fy, t) \geq \phi(M(gx, gy, t))$, $N(fx, fy, t) \leq \psi(N(gx, gy, t))$,

where $\phi, \psi : [0, 1] \rightarrow [0, 1]$ are continuous functions such that $\phi(t) > t$ and $\psi(t) < t$ for each $0 < t < 1$. If $f(X) \subseteq g(X)$, and if one of $f(X)$ or $g(X)$ is complete in X, then f and g have a unique common fixed point.

Proof. Let x_0 be an arbitrary point in X. Since $f(X) \subseteq g(X)$, we can choose $x_1 \in X$ such that $fx_0 = gx_1$. Generally, chosen x_{n+1} such that $fx_n = gx_{n+1}$ for $n = 0, 1, 2, \cdots$. Then for $t > 0$,

$$\begin{align*}
M(fx_n, fx_{n+1}, t) &\geq \phi(M(gx_n, gx_{n+1}, t)) \\
&= \phi(M(fx_{n-1}, fx_n, t)) > M(fx_{n-1}, fx_n, t),
\end{align*}$$

(2) $N(fx_n, fx_{n+1}, t) \leq \psi(N(gx_n, gx_{n+1}, t))$

$$\begin{align*}
&= \psi(N(fx_{n-1}, fx_n, t)) < N(fx_{n-1}, fx_n, t).
\end{align*}$$

Hence, $\{M(fx_n, fx_{n+1}, t)\}_{n \geq 0}$ is an increasing in $[0, 1]$ and $\{N(fx_n, fx_{n+1}, t)\}_{n \geq 0}$ is decreasing in $[0, 1]$.

Now, we prove that

$$\lim_{n \to \infty} M(fx_n, fx_{n+1}, t) = 1, \quad \lim_{n \to \infty} N(fx_n, fx_{n+1}, t) = 0.$$

If $\lim_{n \to \infty} M(fx_n, fx_{n+1}, t) < 1$ and $\lim_{n \to \infty} N(fx_n, fx_{n+1}, t) > 0$, from (2),

$$\begin{align*}
\lim_{n \to \infty} M(fx_n, fx_{n+1}, t) &\geq \lim_{n \to \infty} \phi(M(gx_n, gx_{n+1}, t)) > \lim_{n \to \infty} M(fx_{n-1}, fx_n, t), \\
\lim_{n \to \infty} N(fx_n, fx_{n+1}, t) &\leq \lim_{n \to \infty} \psi(N(gx_n, gx_{n+1}, t)) < \lim_{n \to \infty} N(fx_{n-1}, fx_n, t),
\end{align*}$$

which is a contradiction. Hence

$$\lim_{n \to \infty} M(fx_n, fx_{n+1}, t) = 1, \quad \lim_{n \to \infty} N(fx_n, fx_{n+1}, t) = 0.$$
Now, for any positive integer \(p \),

\[
M(fx_n, fx_{n+p}, t) \geq M(fx_n, fx_{n+1}, \frac{t}{k}) \cdot \cdots \cdot M(fx_{n+p-1}, fx_{n+p}, \frac{t}{k}),
\]

\[
N(fx_n, fx_{n+p}, t) \leq N(fx_n, fx_{n+1}, \frac{t}{k}) \cdot \cdots \cdot N(fx_{n+p-1}, fx_{n+p}, \frac{t}{k}).
\]

Therefore

\[
\lim_{n \to \infty} M(fx_n, fx_{n+p}, t) \geq 1 \cdot 1 \cdot \cdots \cdot 1 \geq 1,
\]

\[
\lim_{n \to \infty} N(fx_n, fx_{n+p}, t) \leq 0 \cdot 0 \cdot \cdots \cdot 0 \leq 0.
\]

Thus \(\{ fx_n \} = \{ gx_{n+1} \} \) is a Cauchy sequence. Suppose that \(g(X) \) is complete, \(\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = z \) for some \(z \in X \). Let \(u = g^{-1}z \), then \(gu = z \).

By (1), we have

\[
M(fx_n, fu, t) \geq \phi(M(gx_n, gu, t)),
\]

\[
N(fx_n, fu, t) \leq \psi(N(gx_n, gu, t)).
\]

Therefore, as \(n \to \infty \), we have

\[
M(z, fu, t) \geq 1, \quad N(z, fu, t) \leq 0,
\]

which implies that \(fu = z \), that is, \(fu = gu = z \). If \(f(X) \) is complete, then \(z \in f(X) \subset g(X) \) and we have \(fu = gu = z \). Hence \(u \) is coincidence point of \(f \) and \(g \). Also, if \(f \) and \(g \) are type(\(A_f \)) \(k \)-weakly commuting maps at coincidence point, then we have

\[
M(fgu, ggu, t) \geq M(fu, gu, \frac{t}{k}) = 1,
\]

\[
N(fgu, ggu, t) \leq N(fu, gu, \frac{t}{k}) = 0,
\]

which implies \(fgu = ggu \). Hence \(fz = gz \).

Similarly, if \(f \) and \(g \) are type(\(A_g \)) \(k \)-weakly commuting at coincidence point, \(fz = gz \). By (1), we have

\[
M(fx_n, fz, t) \geq \phi(M(gx_n, gz, t)) > M(gx_n, gz, t),
\]

\[
N(fx_n, fz, t) \leq \psi(N(gx_n, gz, t)) < N(gx_n, gz, t).
\]

We get as \(n \to \infty \),

\[
M(z, fz, t) > M(z, fz, t), \quad N(z, fz, t) < N(z, fz, t),
\]

which is a contradiction. Hence \(fz = z = gz \). Hence \(z \) is a common fixed point of \(f \) and \(g \).
If \(w(w \neq z) \) is another common fixed point of \(f \) and \(g \). Then there exists \(t > 0 \) such that
\[
M(z, w, t) = M(fz, fw, t) \geq \phi(M(gz, gw, t)) \\
\geq \phi(M(z, w, t)) > M(z, w, t),
\]
\[
N(z, w, t) = N(fz, fw, t) \leq \psi(N(gz, gw, t)) \\
\leq \psi(N(z, w, t)) < N(z, w, t),
\]
which is a contradiction. Therefore \(z = w \). Hence \(z \) is a unique common fixed point of \(f \) and \(g \).

\[\square\]

Theorem 3.2. Let \(X \) be an IFMS with \(t \ast t \geq t \) and \(t \circ t \leq t \) for all \(t \in [0, 1] \). Let \(f \) and \(g \) be self maps of \(X \) such that \(f \) and \(g \) are type\((A_f)\) \(k\)-weakly commuting maps or type\((A_g)\) \(k\)-weakly commuting maps at coincidence points and satisfying the following conditions:

(a) for given \(\epsilon \in (0, 1) \), there exists \(\delta \in (0, \epsilon) \) such that
\[
\epsilon \geq M(gx, gy, t) > \epsilon - \delta \Rightarrow M(fx, fy, t) > \epsilon,
\]
\[
\epsilon - \delta \leq N(gx, gy, t) < \epsilon \Rightarrow N(fx, fy, t) < \epsilon - \delta,
\]

(b) \(fx = fy \), whenever \(gx = gy \).

If \(f(X) \subseteq g(X) \) and one of \(f(X) \) or \(g(X) \) is complete, then \(f \) and \(g \) have a unique common fixed point in \(X \).

Proof. We can define a sequence \(\{x_n\} \subset X \) such that \(fx_n = gx_{n+1} \) for \(n = 1, 2, \ldots \). By (a), for all \(x, y \in X \) with \(gx \neq gy \), we have
\[
M(fx, fy, t) > M(gx, gy, t), \quad N(fx, fy, t) < N(gx, gy, t).
\]

Thus
\[
M(fx_n, fx_{n+1}, t) > M(gx_n, gx_{n+1}, t) = M(fx_{n-1}, fx_n, t),
\]
\[
N(fx_n, fx_{n+1}, t) < N(gx_n, gx_{n+1}, t) = N(fx_{n-1}, fx_n, t).
\]

Therefore \(\{M(fx_n, fx_{n+1}, t)\}_{n \geq 1} \) is an increasing sequence, \(\{N(fx_n, fx_{n+1}, t)\}_{n \geq 1} \) is a decreasing sequence. Since
\[
\lim_{n \to \infty} M(fx_n, fx_{n+1}, t) \leq 1, \quad \lim_{n \to \infty} N(fx_n, fx_{n+1}, t) \geq 0,
\]
we prove that
\[
\lim_{n \to \infty} M(fx_n, fx_{n+1}, t) = 1, \quad \lim_{n \to \infty} N(fx_n, fx_{n+1}, t) = 0.
\]

If \(M(fx_n, fx_{n+1}, t) < 1 \) and \(N(fx_n, fx_{n+1}, t) > 0 \) for given small \(\delta > 0 \), there exist a positive real number \(N_0 \) such that for all \(m \geq N_0 \),
\[
\lim_{n \to \infty} M(fx_n, fx_{n+1}, t) \geq M(fx_m, fx_{m+1}, t) = M(gx_{m+1}, fx_{m+2}, t) \\
> \lim_{n \to \infty} M(fx_n, fx_{n+1}, t) - \delta,
\]
\[
\lim_{n \to \infty} N(fx_n, fx_{n+1}, t) - \delta \leq N(fx_m, fx_{m+1}, t) = N(gx_{m+1}, fx_{m+2}, t) \\
< \lim_{n \to \infty} N(fx_n, fx_{n+1}, t).
\]
We obtain
\[M(fx_m, fx_{m+1}, t) > \lim_{n \to \infty} M(fx_n, fx_{n+1}, t), \]
\[N(fx_m, fx_{m+1}, t) < \lim_{n \to \infty} N(fx_n, fx_{n+1}, t), \]
which is a contradiction. Therefore, we have
\[\lim_{n \to \infty} M(fx_m, fx_{m+1}, t) = \lim_{n \to \infty} M(gx_{m+1}, gx_{m+2}, t), \]
\[\lim_{n \to \infty} N(fx_m, fx_{m+1}, t) = \lim_{n \to \infty} N(gx_{m+1}, gx_{m+2}, t). \]
Hence by the same argument, \(\{fx_n\} = \{gx_{n+1}\} \) is Cauchy sequence. Suppose that \(g(X) \) is complete, for some \(z \in X \),
\[\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_{n+1} = z. \]
Let \(u = g^{-1}z \), then \(gu = z \). By (a), we have
\[M(fx_n, fu, t) \geq \phi(M(gx_n, gu, t)), \quad N(fx_n, fu, t) \leq \psi(N(gx_n, gu, t)). \]
Then we have as \(n \to \infty \), \(M(z, fu, t) \geq 1, N(z, fu, t) \leq 0 \) which implies that \(fu = z \), hence \(fu = gu = z \). If \(f(X) \) is complete, then \(z \in f(X) \subseteq g(X) \) and we have \(fu = gu = z \) that \(u \) is coincidence point of \(f \) and \(g \). Since \(f \) and \(g \) are type(\(A_f \)) k-weakly commuting at coincidence points, we have for \(k > 0 \),
\[M(fgu, ggu, t) \geq M(fx, gx, \frac{t}{k}) = 1, \]
\[N(fgu, ggu, t) \leq N(fx, gx, \frac{t}{k}) = 0, \]
which implies that \(fgu = ggu \). That is, \(fz = gz \). Similarly, if \(f \) and \(g \) are type(\(A_g \)) k-weakly commuting at coincidence points, we have \(fz = gz \). By (a),
\[M(fx_n, fz, t) > \phi(M(gx_n, gz, t)), \quad N(fx_n, fz, t) < \psi(N(gx_n, gz, t)). \]
We have as \(n \to \infty \),
\[M(z, fz, t) > M(z, gz, t), \quad N(z, fz, t) < N(z, gz, t), \]
which is contradiction. Thus \(fz = gz = z \). Hence \(z \) is a common fixed point of \(f \) and \(g \). Also, \(z \) is a unique common fixed point of \(f \) and \(g \). This completes the proof.

Corollary 3.3. Let \(X \) be an IFMS with \(t \ast t \geq t \) and \(t \circ t \leq t \) for all \(t \in [0, 1] \). Let \(f \) be self map of \(X \) satisfying the following condition:
(a) for given \(\epsilon \in (0, 1) \), there exists \(\delta \in (0, \epsilon) \) such that
\[\epsilon \geq M(x, y, t) > \epsilon - \delta \quad \Rightarrow \quad M(fx, fy, t) > \epsilon, \]
\[\epsilon - \delta \leq N(x, y, t) < \epsilon \quad \Rightarrow \quad N(fx, fy, t) < \epsilon - \delta. \]
Then \(f \) has a unique common fixed point in \(X \).

Proof. Let \(g = I \) be identity map from Theorem 3.2. Then the proof is complete. \(\square \)
REFERENCES

Received: April 11, 2016; Published: July 30, 2016