Application of Generating Functions to the Theory of Success Runs

B.M. Bekker, O.A. Ivanov and V.V. Ivanova

St. Petersburg State University,
Universitetskaya nab., 7-9, St. Petersburg, 199034 Russia

Abstract

In the present paper, we generalize the results of the papers [2] and [4] and give a new proof of the explicit formula for the generating function of the numbers of trials before getting k consecutive successes.

Mathematics Subject Classification: 12J10

Keywords: Generating function, Bernoulli scheme

1 Introduction

We consider the following well-known problem: what is the expected number of coin tosses before two consecutive heads are obtained? A similar question can be asked about a fair six-sided die: how many times do you have to roll before getting a given number k of consecutive sixes? Formally, the problem can be stated as follows. We consider the Bernoulli scheme of trials in which “success” S occurs with probability p and “failure” F occurs with probability $q = 1 - p$. Let X be the random variable whose values are the numbers of trials before getting a success run of length k. The generating function G_X of X is well known (see e.g., [3, Ch. XIII, Sec.7]). Nonetheless, this problem still attracts attention of mathematicians. In the papers [2] and [4], it is shown that, in the case $p = 1/2$, the generating function G_X is connected with the generating function of the so-called k-Fibonacci numbers. Since the generating function for these numbers is constructed in a standard way, one has a new proof of
the formula for the generating function in question. In the present paper, we generalize these results to the case of an arbitrary \(p \).

2 Generating function of the number of trials

We consider the sequences of trials with no success runs of length \(k \). Each such sequence can be represented as a sequence of \(F \)'s and \(S \)'s with no \(k \) successive \(S \)'s. For each \(i = 0, 1, \ldots, k - 1 \), we denote by \(H_n^i \) the event that in a sequence of \(n \) trials the outcome \(S \) occurs at the last \(i \) trials. In particular, \(H_n^0 \) means that the outcome \(F \) occurs at the last trial. Let \(u_n^{(i)} \) be the probability of \(H_n^i \).

For \(i = 0, 1, \ldots, k - 2 \), the transition

\[
\begin{array}{ccl}
\ldots F S \ldots S & \mapsto & \ldots F S \ldots S S
\end{array}
\]

happens with probability \(p \), hence \(u_n^{(i+1)} = p u_n^{(i)} \). Since the probability of \(F \) is \(q = 1 - p \), we have \(u_{n+1}^{(0)} = (1 - p) \left(u_n^{(0)} + u_n^{(1)} + \cdots + u_n^{(k-1)} \right) \). Thus, we obtain the following system of recurrence relations:

\[
\begin{align*}
& u_{n+1}^{(0)} = (1 - p) \left(u_n^{(0)} + u_n^{(1)} + \cdots + u_n^{(k-1)} \right), \\
& u_{n+1}^{(1)} = p u_n^{(0)}, \\
& u_{n+1}^{(2)} = p u_n^{(1)}, \\
& \ldots \\
& u_{n+1}^{(k-1)} = p u_n^{(k-2)}.
\end{align*}
\]

For \(n \geq k - 1 \), we put \(v_n = u_n^{(k-1)} \). Then

\[
\begin{align*}
& u_{n+1}^{(0)} = \frac{1}{p} u_n^{(1)} = \frac{1}{p^2} u_n^{(2)} = \cdots = \frac{1}{p^{k-1}} u_n^{(k-1)} = \frac{1}{p^{k-1}} v_n^{(k-1)} - 1, \\
& u_{n+1}^{(1)} = \frac{1}{p} u_n^{(2)} = \cdots = \frac{1}{p^{k-2}} u_n^{(k-1)} = \frac{1}{p^{k-2}} v_n^{(k-2)}, \\
& \ldots \\
& u_{n+1}^{(k-1)} = v_n, \\
& u_{n+1}^{(0)} = \frac{1}{p^{k-1}} v_n^{(0)},
\end{align*}
\]

which implies that

\[
\frac{v_{n+k}}{p^{k-1}} = (1 - p) \left(\frac{v_{n+k-1}}{p^{k-1}} + \frac{v_{n+k-2}}{p^{k-2}} + \cdots + v_n \right).
\]

Dividing both sides of the equation obtained by \(p^n \), we obtain

\[
\frac{v_{n+k}}{p^{n+k-1}} = (1 - p) \left(\frac{v_{n+k-1}}{p^{n+k-1}} + \frac{v_{n+k-2}}{p^{n+k-2}} + \cdots + \frac{v_n}{p^n} \right).
\]
Putting $x_n = v_n p^{-n}$, we can represent the last relation in the form

$$px_{n+k} = (1 - p)(x_{n+k-1} + x_{n+k-2} + \cdots + x_n),$$

hence

$$x_{n+k} = \frac{1-p}{p} (x_{n+k-1} + x_{n+k-2} + \cdots + x_n). \quad (1)$$

If $p = 1/2$, the relation (1) has the form

$$x_{n+k} = x_{n+k-1} + x_{n+k-2} + \cdots + x_n,$$

which, for $k = 2$, coincides with the recurrence relation for Fibonacci numbers. Relation (1) is proved for $n \geq k - 1$. For $n = 0, 1, \ldots, k - 2$, we put $x_n = 0$ and calculate the values of x_n at $n = k - 1, k, \ldots, 2k - 1$. By definition, we have $x_n = v_n p^{-n} = u_n^{(k-1)} p^{-n} = P(H_n^{k-1}) p^{-n}$. The event H_n^{k-1} consists of one sequence $S \ldots S$ of length $k - 1$. Therefore, its probability is equal to p^{k-1}, and so, $x_{k-1} = 1$. If $k \leq n \leq 2k - 1$, then the event H_n^{k-1} consists of the sequences of the form $\overbrace{FS \ldots S}$, where dots at the beginning mean F’s or S’s. Consequently, \(P(H_n^{k-1}) = (1 - p)p^{k-1} \), and $x_n = (1 - p)p^{k-n-1}$ for $n = k, k + 1, \ldots, 2k - 1$.

Lemma 2.1. Relation (1) is valid for all integers $n \geq 0$.

Proof. For $n = 0$, we have $x_k = (1 - p)/p x_{k-1}$. This relation is valid since $x_k = (1 - p)/p$ and $x_{k-1} = 1$. If $1 \leq n \leq k - 1$, then $k + 1 \leq n + k \leq 2k - 1$. Therefore, $x_{n+k} = (1 - p)p^{-n-1}$. Let us calculate the right-hand side of equation (1). We have

$$x_{n+k-1} + x_{n+k-2} + \cdots + x_n = \frac{1-p}{p^n} + \frac{1-p}{p^{n-1}} + \cdots + \frac{1-p}{p} + 1 + 0 + \cdots + 0 = \frac{1-p + p - p^2 + \cdots + p^{n-1} - p^n + p^n}{p^n} = \frac{1}{p^n}.$$

Consequently, the right-hand side of equation (1) is equal to

$$(1 - p)p^{-n-1} = (1 - p)p^{k-n-1} = x_{n+k}.$$

\square

Lemma 2.2. The generating function of the sequence x_n is given by the formula

$$\varphi(t) = \frac{t^{k-1}}{1 - \frac{1-p}{p} (t + t^2 + \cdots + t^k)} = \frac{p(t^{k-1} - 1)}{(1 - p)t^{k+1} - t + p}. \quad (2)$$
Proof. By definition, \(\varphi(t) = \sum_{n=k-1}^{\infty} x_n t^n \). Removing brackets in
\[
(x_{k-1}t^{k-1} + x_k t^k + \cdots) \left(1 - \frac{1-p}{p} \left(t + t^2 + \cdots + t^k\right)\right),
\]
we obtain by relation (1) that
\[
x_{k-1}t^{k-1} + \left(x_k - \frac{1-p}{p} x_{k-1}\right)t^k + \left(x_{k+1} - \frac{1-p}{p} (x_k + x_{k-1})\right)t^{k+1} + \cdots
\]
\[
+ \left(x_{2k-2} - \frac{1-p}{p} (x_{2k-3} + \cdots + x_{k-1})\right)t^{2k-2} \cdots
\]
\[
+ \left(x_{n+k} - \frac{1-p}{p} (x_{n+k-1} + \cdots + x_n)\right)t^{n+k} + \cdots = t^{k-1},
\]
which implies equation (2).

Lemma 2.3. We have \(G_X(t) = pt \varphi(pt) \), where \(\varphi(t) \) is the generating function of the sequence \(x_n \).

Proof. We note that the probability that \(k \) successive events \(h \) occur the first time immediately after the \(n \)th trial in Bernoulli’s scheme is the product of \(p \) and the probability of \(H_{n-1}^{k-1} \). Thus,
\[
P(X = n) = pP(H_{n-1}^{k-1}) = pu_{n-1}^{k-1} = pv_{n-1} = p^n x_{n-1}.
\]
Therefore,
\[
G_X(t) = \sum_{n=k}^{\infty} P(X = n)t^n = \sum_{n=k}^{\infty} p^n x_{n-1} t^n = pt \sum_{n=k}^{\infty} x_n(pt)^n = pt \varphi(pt).
\]

In conclusion, we derive explicit formulas for the terms of the sequence \(x_n \). We consider the polynomial
\[
g(z) = z^k - \frac{1-p}{p} (z^{k-1} + z^{k-2} + \cdots + 1).
\]
Let \(z_1, z_2, \ldots, z_k \) be the complex roots of \(g(z) \), and let
\[
a_n = \sum_{i=1}^{k} \frac{z_i^n}{g'(z_i)}.
\]
Since \(g(z) = (z - z_1)(z - z_2) \ldots (z - z_k) \), we have the relations
\[
a_0 = a_1 = \cdots = a_{k-2} = 0 \text{ and } a_{k-1} = 1.
\]
Since \(z_i \) are the roots of \(g(z) \), we obtain
\[
z_i^{n+k} = z_i^n \cdot z_i^k = \frac{1-p}{p} \left(z_i^{n+k-1} + z_i^{n+k-2} + \cdots + z_i^n\right),
\]
which implies the relation
\[a_{n+k} = \frac{1-p}{p} (a_{n+k-1} + a_{n+k-2} + \cdots + a_n). \]

Therefore, the numbers \(a_n \) satisfy the same \(k \)th order recurrence relations as the numbers \(x_n \) do. Taking into account that the first \(k \) terms of the sequences in question coincide, we see that \(x_n = a_n \) for all \(n \geq 0 \). As a corollary, we obtain the following explicit formula for the terms of the sequence \(x_n \):
\[x_n = \sum_{i=1}^{k} \frac{z_i^n}{g_i'(z_i)}. \]

(3)

Now we use formula (5) from the paper [1]. Let \(w_n \) be the complete homogeneous polynomial of degree \(n \) in \(k \) variables. We put, by definition, \(w_0 = 1 \) and \(w_{-1} = w_{-2} = \cdots = w_{1-k} = 0 \). By Theorem 1 of the paper [1], we have the relation
\[\sum_{i=1}^{k} \frac{z_i^{n+k-1}}{g_i'(z_i)} = w_n(z_1, z_2, \ldots, z_k), \]
from which we obtain by (3) that
\[x_n = w_{n-k+1}(z_1, z_2, \ldots, z_k). \]

Acknowledgements. The first named author was partially supported by the Russian Foundation for Basic Research (grant no. 14-01-00393)

References

Received: July 6, 2016; Published: August 14, 2016