Continuous Dependence of the Solution of
Itô Stochastic Differential Equation with
Nonlocal Conditions

A. M. A. El-Sayed
Faculty of Science, Alexandria University, Egypt

F. Gaafar and M. El-Gendy
Faculty of Science, Damanhour University, Egypt

Copyright © 2016 A. M. A. El-Sayed, F. Gaafar and M. El-Gendy. This article is
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Abstract

In this paper we are concerned with a nonlocal problem of a stochas-
tic differential equation of Itô type. The solution contains both of Rie-
mann (or Lebesgue) and Itô integrals in the mean square sense, so we
study the existence of a unique mean square continuous solution and its
continuous dependence on the random data X_0 and on the (non-random
data) coefficients of the nonlocal condition a_k. Also, a stochastic differ-
ential equation with the integral condition will be considered.

Keywords: Riemann integral, Itô integral, Brownian motion, nonlocal
condition, unique mean square solution, continuous dependence, random data,
non-random data, integral condition

1 Introduction

Stochastic differential equations have been extensively studied by several authors
specially stochastic differential equations of Itô’s type, they studied Itô’s integral
in mean square sense as in ([19]) and in almost certain sense as in ([2]), properties
of Brownian motion (or a Wiener process) as a formal derivative of the Gaussian
white noise occupied much attention of authors. A Brownian motion $W(t), t \in \mathbb{R}$, is defined as a stochastic process such that

$$W(0) = 0, \quad E(W(t)) = 0, \quad E(W(t))^2 = t$$

and $[W(t_1) - W(t_2)]$ is a Gaussian random variable for all $t_1, t_2 \in \mathbb{R}$.

The reader is referred to ([1]-[3]), ([7]) and ([12]-[21]) and references therein. Also problems with nonlocal conditions have been heavily studied by several authors in the last decades in the ordinary differential equations. The reader is referred to ([4]-[6]) and ([8]-[11]), and references therein.

Here we are concerned with the stochastic differential equation of Itô’s type

$$dX(t) = f(t, X(t))dt + g(t, X(t))dW(t), \quad t \in (0, T] \tag{1}$$

with the nonlocal random initial condition

$$X(0) + \sum_{k=1}^{n} a_k X(\tau_k) = X_0, \quad a_k > 0, \quad \tau_k \in (0, T), \tag{2}$$

where X_0 is a second order random variable independent of the Brownian motion (or Wiener process) $W(t)$ and a_k are positive real numbers.

The existence of a unique mean square continuous solution will be studied. The continuous dependence on the random data X_0 and the non-random data a_k will be established. The problem (1) with the mean square Riemann-Steltjes integral condition

$$X(0) + \int_{0}^{T} X(s)dv(s) = X_0. \tag{3}$$

will be considered.

2 **Existence and uniqueness**

Let $I = [0, T]$ and $C = C(I, L_2(\Omega))$ be the class of all mean square continuous second order stochastic process with the norm

$$\|X\|_C = \sup_{t \in [0,T]} \|X(t)\|_2 = \sup_{t \in [0,T]} \sqrt{E(X(t))^2}.$$

Throughout the paper we assume that the following assumptions hold

(H1) The functions $f : [0, T] \times L_2(\Omega) \to L_2(\Omega)$ and $g : [0, T] \times L_2(\Omega) \to L_2(\Omega)$ are mean square continuous, and there exists a positive real numbers r_1 and r_2 such that

$$\sup_{t \in [0,T]} |f(t,0)| \leq r_1, \quad \sup_{t \in [0,T]} |g(t,0)| \leq r_2.$$
(H2) There exists an integrable functions $k_1 : [0, T] \to R^+$ and $k_2 : [0, T] \to R^+$, where

$$\sup_{t \in [0, T]} \int_0^t k_1(s)ds \leq m_1, \quad \sup_{t \in [0, T]} \int_0^t k_2(s)ds \leq m_2,$$

such that the function f and g satisfy the mean square Lipschitz condition

$$\| f(t, X_1(t)) - f(t, X_2(t)) \|_2 \leq k_1(t) \| X_1(t) - X_2(t) \|_2$$

and

$$\| g(t, X_1(t)) - g(t, X_2(t)) \|_2 \leq k_2(t) \| X_1(t) - X_2(t) \|_2.$$

Now we have the following lemma.

Lemma 2.1 The solution of the nonlocal stochastic problem (1)-(2) can be expressed by the stochastic integral equation

$$X(t) = a \left(X_0 - \sum_{k=1}^n a_k \int_0^\tau_k f(s, X(s))ds + \sum_{k=1}^n a_k \int_0^\tau_k g(s, X(s))dW(s) \right) + \int_0^t f(s, X(s))ds + \int_0^t g(s, X(s))dW(s),$$

(4)

where $a = \left(1 + \sum_{k=1}^n a_k \right)^{-1}$.

Proof. Integrating equation (1), we obtain

$$X(t) = X(0) + \int_0^t f(s, X(s))ds + \int_0^t g(s, X(s))dW(s),$$

then

$$\sum_{k=1}^n a_k X(\tau_k) = \sum_{k=1}^n a_k X(0) + \sum_{k=1}^n a_k \int_0^{\tau_k} f(s, X(s))ds + \sum_{k=1}^n a_k \int_0^{\tau_k} g(s, X(s))dW(s)$$

and

$$X_0 - X(0) = \sum_{k=1}^n a_k X(0) + \sum_{k=1}^n a_k \int_0^{\tau_k} f(s, X(s))ds + \sum_{k=1}^n a_k \int_0^{\tau_k} g(s, X(s))dW(s)$$

and

$$\left(1 + \sum_{k=1}^n a_k \right) X(0) = X_0 - \sum_{k=1}^n a_k \int_0^{\tau_k} f(s, X(s))ds - \sum_{k=1}^n a_k \int_0^{\tau_k} g(s, X(s))dW(s),$$
then

\[X(0) = \left(1 + \sum_{k=1}^{n} a_k\right)^{-1} \left(X_0 - \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} f(s, X(s)) ds - \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} g(s, X(s)) dW(s) \right). \]

Hence

\[X(t) = a \left(X_0 - \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} f(s, X(s)) ds - \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} g(s, X(s)) dW(s) \right) \]

\[+ \int_{0}^{t} f(s, X(s)) ds + \int_{0}^{t} g(s, X(s)) dW(s), \]

where \(a = \left(1 + \sum_{k=1}^{n} a_k\right)^{-1}. \]

Now define the mapping

\[AX(t) = a \left(X_0 - \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} f(s, X(s)) ds - \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} g(s, X(s)) dW(s) \right) \]

\[+ \int_{0}^{t} f(s, X(s)) ds + \int_{0}^{t} g(s, X(s)) dW(s). \]

Then we can prove the following lemma.

Lemma 2.2 \(A : C \to C \).

Proof. Let \(X \in C, \ t_1, t_2 \in [0, T] \) such that \(|t_2 - t_1| < \delta \), then

\[AX(t_2) - AX(t_1) = \int_{t_1}^{t_2} f(s, X(s)) ds + \int_{t_1}^{t_2} g(s, X(s)) dW(s). \]

From assumption (H2) we have

\[\| f(t, X(t)) \|_2 - |f(t, 0)| \leq \| f(t, X(t)) - f(t, 0) \|_2 \leq k_1(t) \| X(t) \|_2, \]

then we have

\[\| f(t, X(t)) \|_2 \leq k_1(t) \| X \|_C + r_1 \]

and similarly,

\[\| g(t, X(t)) \|_2 \leq k_2(t) \| X \|_C + r_2, \]

then we have

\[\| AX(t_2) - AX(t_1) \|_2 \leq \int_{t_1}^{t_2} \| f(s, X(s)) ds \|_2 + \int_{t_1}^{t_2} \| g(s, X(s)) dW(s) \|_2. \]
Continuous dependence of the solution of Itô SDE

Now
\[
\left\| \int_{t_1}^{t_2} f(s, X(s)) ds \right\|_2 \leq \int_{t_1}^{t_2} \| f(s, X(s)) \|_2 ds \leq \int_{t_1}^{t_2} [k_1(s) \| X \|_C + r_1] ds
\]
\[
\leq \| X \|_C \int_{t_1}^{t_2} k_1(s) ds + r_1(t_2 - t_1)
\]
and
\[
\left\| \int_{t_1}^{t_2} g(s, X(s)) dW(s) \right\|_2 \leq \int_{t_1}^{t_2} \| g(s, X(s)) \|_2 \| X \|_C + g(s, 0) \|_2 ds
\]
\[
\leq 2 \| X \|_C \int_{t_1}^{t_2} k_2(s) ds + 2 \int_{t_1}^{t_2} | g(s, 0) |^2 ds
\]
\[
\leq 2 \| X \|_C \int_{t_1}^{t_2} k_2(s) ds + 2r_2^2(t_2 - t_1).
\]

So,
\[
\| A X(t_2) - A X(t_1) \|_2 \leq \| X \|_C \int_{t_1}^{t_2} k_1(s) ds + r_1(t_2 - t_1) + \| X \|_C \sqrt{2 \int_{t_1}^{t_2} k_2^2(s) ds + r_2 \sqrt{2(t_2 - t_1)}},
\]
which proves that $A : C \to C$.

For the existence of a unique mean square continuous solution $X \in C$ of the problem (1)-(2), we have the following theorem.

Theorem 2.1 Let the assumptions (H1)-(H2) be satisfied. If $2(m_1 + m_2) < 1$, then the problem (1)-(2) has a unique solution $X \in C$.

Proof. Let X and $X^* \in C$, then
\[
\| AX(t) - AX^*(t) \|_2 \leq \| \int_0^t [f(s, X(s)) - f(s, X^*(s))] ds - a \sum_{k=1}^n a_k \int_0^{\tau_k} [f(s, X(s)) - f(s, X^*(s))] ds \|_2
\]
\[
+ \| \int_0^t [g(s, X(s)) - g(s, X^*(s))] dW(s) - a \sum_{k=1}^n a_k \int_0^{\tau_k} [g(s, X(s)) - g(s, X^*(s))] dW(s) \|_2.
\]

we have
\[
\| \int_0^t [f(s, X(s)) - f(s, X^*(s))] ds \|_2 \leq \| X - X^* \|_C \int_0^t k_1(s) ds \leq m_1 \| X - X^* \|_C
\]
and
\[
\left\| \int_0^t (g(s, X(s)) - g(s, X^*(s))) dW(s) \right\|_2^2 = \int_0^t \left\| g(s, X(s)) - g(s, X^*(s)) \right\|_2^2 ds \\
\leq \| X - X^* \|_C^2 \int_0^t |k_2(s)|^2 ds \leq m_2^2 \| X - X^* \|_C^2.
\]

Hence
\[
\| AX - AX^* \|_C \leq 2(m_1 + m_2) \| X - X^* \|_C.
\]

If \(2(m_1 + m_2) < 1\), then \(A\) is contraction and there exists a unique solution \(X \in C\) of the nonlocal stochastic problem (1)-(2), [3]. This solution is given by (4).

3 Continuous dependence

Consider the stochastic differential equation (1) with the nonlocal condition
\[
X(0) + \sum_{k=1}^n a_k X(\tau_k) = \tilde{X}_0, \quad \tau_k \in (0, T) \tag{5}
\]

Definition 3.1 The solution \(X \in C\) of the nonlocal problem (1), (2) is continuously dependent (on the data \(X_0\)) if \(\forall \epsilon > 0, \exists \delta > 0\) such that \(\| X_0 - \tilde{X}_0 \|_2 \leq \delta\) implies that \(\| X - \tilde{X} \|_C \leq \epsilon\)

Here, we study the continuous dependence (on the random data \(X_0\)) of the solution of the stochastic differential equation (1) and (2).

Theorem 3.2 Let the assumptions (H1)-(H2) be satisfied. Then the solution of the nonlocal problem (1)-(2) is continuously dependent on the random data \(X_0\).

Proof. Let \(X(t)\) as defined in equation (4) be the solution of the nonlocal problem (1)-(2) and
\[
\tilde{X}(t) = a \left(\tilde{X}_0 - \sum_{k=1}^n a_k \int_0^{\tau_k} f(s, \tilde{X}(s)) ds - \sum_{k=1}^n a_k \int_0^{\tau_k} g(s, \tilde{X}(s)) dW(s) \right) \\
+ \int_0^t f(s, \tilde{X}(s)) ds + \int_0^t g(s, \tilde{X}(s)) dW(s)
\]
be the solution of the nonlocal problem (1) and (5). Then
\[
X(t) - \tilde{X}(t) =
\]
Continuous dependence of the solution of Itô SDE

\[a[X_0 - \tilde{X}_0] - a \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} [f(s, X(s)) - f(s, \tilde{X}(s))] ds \]

\[-a \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} [g(s, X(s)) - g(s, \tilde{X}(s))] dW(s) \]

\[+ \int_{0}^{t} [f(s, X(s)) - f(s, \tilde{X}(s))] ds + \int_{0}^{t} [g(s, X(s)) - g(s, \tilde{X}(s))] dW(s). \]

Using our assumptions, we get

\[\| X(t) - \tilde{X}(t) \|_2 \leq a \| X_0 - \tilde{X}_0 \|_2 + a \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} \| f(s, X(s)) - f(s, \tilde{X}(s)) \|_2 ds \]

\[+ a \sum_{k=1}^{n} a_k \left\| \int_{0}^{\tau_k} [g(s, X(s)) - g(s, \tilde{X}(s))] dW(s) \right\|_2 \]

\[+ \int_{0}^{t} \| f(s, X(s)) - f(s, \tilde{X}(s)) \|_2 ds + \left\| \int_{0}^{t} [g(s, X(s)) - g(s, \tilde{X}(s))] dW(s) \right\|_2 \]

then we can get

\[\| X - \tilde{X} \|_C \leq a\delta + a \sum_{k=1}^{n} a_k m_1 \| X - \tilde{X} \|_C + a \sum_{k=1}^{n} a_k m_2 \| X - \tilde{X} \|_C \]

\[+ m_1 \| X - \tilde{X} \|_C + m_2 \| X - \tilde{X} \|_C \]

\[\leq a\delta + 2(m_1 + m_2) \| X - \tilde{X} \|_C \]

Hence

\[\| X - \tilde{X} \|_C \leq \frac{a\delta}{1 - 2(m_1 + m_2)}. \]

This complete the proof.

Now consider the stochastic differential equation (1) with the nonlocal condition

\[X(0) + \sum_{k=1}^{n} \tilde{a}_k X(\tau_k) = X_0, \quad \tau_k \in (0, T) \quad (6) \]

Definition 3.2 The solution \(X \in C \) of the nonlocal problem (1)-(2) is continuously dependent (on the data \(a_k \)) if \(\forall \epsilon > 0 \), \(\exists \delta > 0 \) such that \(| a_k - \tilde{a}_k | \leq \delta \) implies that \(\| X - \tilde{X} \|_C \leq \epsilon \)

Here, we study the continuous dependence (on the coefficient \(a_k \) of the nonlocal condition) of the solution of the stochastic differential equation (1) and (2).
Theorem 3.3 Let the assumptions (H1)-(H2) be satisfied. Then the solution of the nonlocal problem (1)-(2) is continuously dependent on the coefficients \(a_k \) of the nonlocal condition.

Proof. Let \(X(t) \) as defined in equation (4) be the solution of the nonlocal problem (1)-(2) and

\[
X(t) = \tilde{a} \left(X_0 - \sum_{k=1}^{n} \tilde{a}_k \int_0^{\tau_k} f(s, \tilde{X}(s)) ds - \sum_{k=1}^{n} a_k \int_0^{\tau_k} g(s, X(s)) dW(s) \right) + \int_0^t f(s, \tilde{X}(s)) ds + \int_0^t g(s, \tilde{X}(s)) dW(s)
\]

be the solution of the nonlocal problem (1) and (6). Then

\[
X(t) - \tilde{X}(t) = [a - \tilde{a}]X_0 + \int_0^t [f(s, X(s)) - f(s, \tilde{X}(s))] ds + \int_0^t [g(s, X(s)) - g(s, \tilde{X}(s))] ds \\
- a \sum_{k=1}^{n} a_k \int_0^{\tau_k} f(s, X(s)) ds + \tilde{a} \sum_{k=1}^{n} \tilde{a}_k \int_0^{\tau_k} f(s, \tilde{X}(s)) ds \\
- a \sum_{k=1}^{n} a_k \int_0^{\tau_k} g(s, X(s)) ds + \tilde{a} \sum_{k=1}^{n} \tilde{a}_k \int_0^{\tau_k} g(s, \tilde{X}(s)) ds.
\]

Now

\[
|a - \tilde{a}| = \left| \frac{1}{1 + \sum_{k=1}^{n} a_k} - \frac{1}{1 + \sum_{k=1}^{n} \tilde{a}_k} \right| = \left| \sum_{k=1}^{n} (\tilde{a}_k - a_k) \right| \leq \sum_{k=1}^{n} |\tilde{a}_k - a_k| \leq n\delta,
\]
Continuous dependence of the solution of Itô SDE

and

\[\tilde{a} \sum_{k=1}^{n} \tilde{a}_k \int_{0}^{\tau_k} f(s, \tilde{X}(s))ds - a \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} f(s, X(s))ds = \tilde{a} \left(1 + \sum_{k=1}^{n} \tilde{a}_k \right) \int_{0}^{\tau_k} f(s, \tilde{X}(s))ds \]

\[- a \left(1 + \sum_{k=1}^{n} a_k \right) \int_{0}^{\tau_k} f(s, X(s))ds - \tilde{a} \int_{0}^{\tau_k} f(s, \tilde{X}(s))ds + a \int_{0}^{\tau_k} f(s, X(s))ds \]

\[= \tilde{a}(\tilde{a}^{-1}) \int_{0}^{\tau_k} f(s, \tilde{X}(s))ds - a(\tilde{a}^{-1}) \int_{0}^{\tau_k} f(s, X(s))ds - \tilde{a} \int_{0}^{\tau_k} f(s, \tilde{X}(s))ds + a \int_{0}^{\tau_k} f(s, X(s))ds \]

\[= - \int_{0}^{\tau_k} [f(s, X(s)) - f(s, \tilde{X}(s))]ds + a \int_{0}^{\tau_k} f(s, X(s))ds - \tilde{a} \int_{0}^{\tau_k} f(s, \tilde{X}(s))ds + \tilde{a} \int_{0}^{\tau_k} [f(s, X(s)) - f(s, \tilde{X}(s))]ds, \]

similarly

\[\tilde{a} \sum_{k=1}^{n} \tilde{a}_k \int_{0}^{\tau_k} g(s, \tilde{X}(s))ds - a \sum_{k=1}^{n} a_k \int_{0}^{\tau_k} g(s, X(s))ds \]

\[= - \int_{0}^{\tau_k} [g(s, X(s)) - g(s, \tilde{X}(s))]ds + [a - \tilde{a}] \int_{0}^{\tau_k} g(s, X(s))ds + \tilde{a} \int_{0}^{\tau_k} [g(s, X(s)) - g(s, \tilde{X}(s))]ds. \]

Then,

\[\| X(t) - \tilde{X}(t) \|_2 \leq \]

\[n\delta \| X_0 \|_2 + \int_{\tau_k}^{t} \| f(s, X(s)) - f(s, \tilde{X}(s)) \|_2 ds + \left\| \int_{\tau_k}^{t} [g(s, X(s)) - g(s, \tilde{X}(s))]ds \right\|_2 \]

\[+ n\delta \int_{0}^{\tau_k} \| f(s, X(s)) \|_2 ds + \tilde{a} \int_{0}^{\tau_k} \| f(s, \tilde{X}(s)) \|_2 ds \]

\[+ n\delta \left\| \int_{0}^{\tau_k} g(s, X(s))ds \right\|_2 + \tilde{a} \left\| \int_{0}^{\tau_k} [g(s, X(s)) - g(s, \tilde{X}(s))]ds \right\|_2. \]

Using our assumptions we get

\[\| X - \tilde{X} \|_C \leq n\delta \| X_0 \|_2 + m_1 \| X - \tilde{X} \|_C + m_2 \| X - \tilde{X} \|_C + n\delta (\| X \|_C m_1 + r_1 T) \]

\[+ \tilde{a} m_1 \| X - \tilde{X} \|_C + n\delta \sqrt{2(\| X \|_C m_2 + r_2 \sqrt{T})} + \tilde{a} m_2 \| X - \tilde{X} \|_C, \]
and
\[
\| X - \tilde{X} \|_C \leq n\delta \left[\| X_0 \|_C + m_1 \| X \|_C + r_1 T + \sqrt{2} \left(\| X \|_C m_2 + r_2 \sqrt{T} \right) \right] \\
+ \left[m_1 + \tilde{a} m_1 + m_2 + \tilde{a} m_2 \right] \| X - \tilde{X} \|_C \\
\leq n\delta \left[\| X_0 \|_C + m_1 \| X \|_C + r_1 T + \sqrt{2} \left(\| X \|_C m_2 + r_2 \sqrt{T} \right) \right] + 2(m_1 + m_2) \| X - \tilde{X} \|_C.
\]

Hence
\[
\| X - \tilde{X} \|_C \leq \frac{n\delta \left[\| X_0 \|_C + m_1 \| X \|_C + r_1 T + \sqrt{2} \left(\| X \|_C m_2 + r_2 \sqrt{T} \right) \right]}{1 - 2(m_1 + m_2)}.
\]

This complete the proof. ■

4 Nonlocal integral condition

Let \(v : [0, T] \to [0, T] \) be nondecreasing function such that \(a_k = v(t_k) - v(t_{k-1}), \tau_k \in (t_{k-1}, t_k), \) where \(0 < t_1 < t_2 < t_3 < \ldots < T \). Then, the nonlocal condition (2) will be in the form
\[
X(0) + \sum_{k=1}^{n} X(\tau_k) (v(t_k) - v(t_{k-1})) = X_0.
\]

From the mean square continuity of the solution of the nonlocal problem (1)-(2), we obtain from [19]
\[
\lim_{n \to \infty} \sum_{k=1}^{n} X(\tau_k) (v(t_k) - v(t_{k-1})) = \int_0^T X(s)dv(s),
\]
that is, the nonlocal conditions (2) is transformed to the mean square Riemann-Steltjes integral condition
\[
X(0) + \int_0^T X(s)dv(s) = X_0,
\]
Now, we have the following theorem.

Theorem 4.4 Let the assumptions (H1)-(H2) be satisfied, then the stochastic differential equation (1) with the nonlocal integral condition (3) has a unique solution represented in the form
\[
X(t) = a^* \left(X_0 - \int_0^T \int_0^s f(\theta, X(\theta))d\theta dv(s) - \int_0^T \int_0^s g(\theta, X(\theta))dW(\theta)dv(s) \right) \\
+ \int_0^t f(\theta, X(\theta))d\theta + \int_0^t g(\theta, X(\theta))dW(\theta).
\]

where \(a^* = (1 + v(T) - v(0))^{-1}. \)
Proof. Taking the limit of equation (4) we get the proof. ■

References

Received: April 21, 2016; Published: June 10, 2016