Quasi-Bounded Supersolutions of Discrete Schrödinger Equations

K. Abodayeh
Department of Mathematical Sciences
Prince Sultan University
P.O. Box 66833, Riyadh 11586, Saudi Arabia

V. Anandam
The Institute of Mathematics
CIT Campus
Chennai 600113, India

Copyright © 2016 K. Abodayeh and V. Anandam. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the framework of discrete potential theory on a strongly connected infinite network X, for the Schrödinger equation with positive potential $q(x)$, we obtain some properties of its positive q-solutions and positive q-supersolutions. We give also some conditions for the existence of positive singular q-harmonic solutions on X which are necessarily unbounded; and a few properties of quasi-bounded q-supersolutions are also obtained.

Keywords: q-harmonic, q-superharmonic, quasi bounded q-harmonic function, Schrödinger equations

1 Introduction

Long back in the Euclidean case Brelot [3] initiated the study of solutions to the equation $\Delta (M) = c(M) u(M)$, $c(M) \geq 0$. After many years, Ozawa started considering this equation on Riemann surfaces. In the classification theory of
Riemann surfaces \mathcal{R}, the equation $\Delta u = Pu$ where $P(z)dx\,dy, P(z) \neq 0$ is a non-negative C^1-differential on \mathcal{R}, has been investigated extensively. Ozawa [6] initiated this study in \mathcal{R} and continued it in [7] and [8]. Meanwhile Myrberg [4] showed that on every Riemann surface there always exists the Green function of $\Delta u = Pu$. Royden [10] studied the classification of Riemann surfaces by considering varied differential forms P and Dirichlet integrals.

Earlier Parreau [9] had devised a method of classification of Riemann surfaces \mathcal{R} by introducing two subclasses of positive harmonic functions on \mathcal{R}, namely quasi-bounded harmonic functions and singular harmonic functions. Taking the important study of Parreau’s in the context of the equation $\Delta u = Pu$ on \mathcal{R}, Ow [5] proves some properties of quasi-bounded and singular solutions of $\Delta u = Pu$ using the Wiener P-harmonic boundary.

It is of interest to mention here that Arsove and Leutwiler [2] give a general formulation of quasi-bounded and singular functions on bounded regions Ω in Euclidean space. Let \mathcal{M} be the class of all nonnegative functions u on Ω which are majorised by superharmonic functions. Using the notions of reduced functions and their lower semi-continuous regularisations an operator S is defined on \mathcal{M}. A function u in \mathcal{M} is said to be quasi-bounded if $Su = 0$ and u is called singular if $Su = u$.

A development based on the properties of the operator S relates this study to that of Parreau’s on quasi-bounded and singular harmonic functions on Riemann surfaces.

In this note, we recast many of the above results on \mathcal{R} in the framework of discrete potential theory on strongly connected infinite networks X. An equation of the form $\Delta u(x) = q(x)u(x)$ where $q(x) \geq 0$ is real-valued is referred to as a Schrödinger equation with potential $q(x)$. The properties of its positive q-solutions ($q(x)u(x) = \Delta u(x)$) and its positive q-supersolutions ($q(x)u(x) \geq \Delta u(x)$) are obtained; since it is possible that all the positive q-solutions are bounded for some X (recall Schiff’s conjecture [11, p. 240] that there always exists a non-negative unbounded solution of $\Delta u = Pu$ on an open Riemann surface $\mathcal{R} \notin O_{PB}$), we give some conditions for the existence of positive singular q-harmonic functions on X which are necessarily unbounded; and a few properties of quasi-bounded q-supersolutions are also obtained.

2 Preliminaries

Let X be a set consisting of an infinitely countable set of points called vertices. Let $t(x,y)$ be a transition function on X. That is, $t : X \times X \to \mathbb{R}^+$ such that i) $t(x,y)$ and $t(y,x)$ are not necessarily equal, and ii) $t(x,x) = 0$ for all $x \in X$. If
also that given any pair of vertices \(x, y \) there are only a finite number of vertices for any vertex \(x \). We assume also that given any pair of vertices \(x, y \) such that \(t(x, y) > 0 \). Note that if \(y \sim x \) then it is not necessary \(x \sim y \). We assume that there are only a finite number of vertices for any vertex \(x \). We assume also that given any pair of vertices \(x, y \) there exists a finite sequence of vertices \(\{x = x_0, x_1, \ldots, x_n = y\} \) such that \(t(x_0, x_1)t(x_1, x_2)\ldots t(x_{n-1}, x_n) > 0 \). Thus \(\{X, t(x, y)\} \) is an infinite digraph that is strongly connected, locally finite and without self-loops.

For a subset \(E \) of \(X \), a vertex \(x \in E \) is said to be an interior vertex of \(E \) if all the neighbours of \(x \) in \(X \) are also in \(E \). The set of all the interior vertices of \(E \) is denoted by \(E \). For a real-valued function \(u(x) \) on \(E \), define the Laplace operator \(\Delta u(x) = \sum_{y \sim x} t(x, y)[u(y) − u(x)] \) for any \(x \in E \). If \(\Delta u(x) \leq 0 \) for every \(x \in E \), then \(u(x) \) is said to be superharmonic on \(E \), and if \(\Delta u(x) = 0 \) for every \(x \in E \) then \(u(x) \) is said to be harmonic on \(E \).

Let \(q(x) \geq 0 \) be defined on \(X \), \(q \not= 0 \). For a real-valued function \(v(x) \) on \(X \), if we define \(\Delta_q v(x) = \Delta v(x) − q(x)v(x) \), then \(\Delta_q \) is referred to as the Schrödinger operator with potential function \(q(x) \).

Definition 2.1. A real-valued function \(u(x) \) on a subset \(E \) is said to be Schrödinger harmonic (or \(q \)-harmonic) on \(E \) if \(\Delta_q u(x) = 0 \) for all \(x \in E \). If a real-valued function \(v(x) \) is the Schrödinger super solution on \(E \), that is \(\Delta_q v(x) \leq 0 \) for every \(x \in E \), then \(v(x) \) is said to be \(q \)-superharmonic on \(E \).

Lemma 2.1 (1, Theorem 4.1.3). If \(f(x) \) is a real-valued function on \(X \), let \(F \) be the family of all \(q \)-superharmonic functions on \(X \) majorizing \(f \) on \(X \). If \(F \) is non-empty, then \(Rf(x) = \inf \{s(x) : s \in F\} \) is \(q \)-superharmonic on \(X \) and \(q \)-harmonic at each vertex \(a \) where \(f(a) \) is \(q \)-subharmonic.

As a consequence and with the help of Poisson modification we prove the following theorem as in [1, Theorem 4.1.1]:

Theorem 2.2. Suppose \(u \) is \(q \)-superharmonic and \(v \) is \(q \)-subharmonic on \(X \) such that \(u \geq v \). Then there exists a \(q \)-harmonic function \(h \) on \(X \) such that \(u \geq h \geq v \). This function \(h \) can be chosen such that if \(h' \) is another \(q \)-harmonic function such that \(u \geq h' \geq v \) then \(h \geq h' \).

In the above theorem, \(h \) is referred to as the greatest \(q \)-harmonic minorant of \(u \). If \(s \geq 0 \) is a \(q \)-superharmonic function whose greatest \(q \)-harmonic minorant is 0, then \(s \) is called a \(q \)-potential on \(X \).

If \(s(x) \) is the constant function 1, then \(\Delta_q s(x) \leq 0 \) for all \(x \in X \). Hence the constant function 1 is \(q \)-superharmonic but not \(q \)-harmonic on \(X \). Take
the greatest q-harmonic minorant $h(x)$ of 1 on X. If $h = 0$ that is 1 is a q-potential on X then X is said to be a q-parahyperbolic network. Otherwise X is known as a q-bounded hyperbolic network. Thus X is q-bounded hyperbolic network if and only if there exist bounded positive q-harmonic functions on X. Actually it is easy to check that X is q-bounded hyperbolic if and only if there are non-zero bounded q-harmonic functions on X. We give below an example each for the two types of networks mentioned above.

Example 1. Let $X = \{\ldots, e_2, e_1, e_0, e_1, e_2, \ldots\}$ be an infinite linear graph with Markovian indices $p(e_n, e_{n+1}) = p(e_n, e_{n-1}) = \frac{1}{2}$ for all n. Let $q(x) \geq 0$ be defined on X such that $q(e_n) = \frac{1}{4}$ for all n. Then any q-harmonic function $h(x)$ on X is of the form $h(n) = A2^n + B2^{-n}$ where A, B are constants. Hence the only bounded q-harmonic function on X is 0. Consequently, X is a q-parahyperbolic network.

Example 2. Let $X = \{e_0, e_1, e_2, \ldots\}$ be an infinite linear graph with the Markovian transition indices $p(e_0, e_1) = 1$ and for $n \geq 1$, $p(e_n, e_{n+1}) = \frac{2}{3}$ and $p(e_n, e_{n-1}) = \frac{1}{3}$. Let $q(x) \geq 0$ be the function on X such that $q(e_0) = \frac{1}{3}$ and $q(e_n) = 0$ for $n \geq 1$. Then the function $h(x)$ defined on X as $h(e_n) = 1 + \frac{1}{3} + \cdots + \frac{1}{3^n}$ for $n \geq 0$ is a bounded q-harmonic function on X. Hence X is a q-bounded hyperbolic network. Note that in this example, any positive q-harmonic function on X is bounded and proportional to $h(x)$.

3 Positive harmonic functions

The above examples show that there may or may not be any positive bounded q-harmonic functions on X. However since the positive constants are always q-superharmonic functions on X. There are always some positive q-harmonic functions on X [1, Theorem 4.1.9]. Let H_q^+ denote the class of nonnegative c-harmonic functions on X. In this section, we rapidly go through the procedure to obtain an integral representation for positive q-harmonic functions on X, using the Choquet theorem, similar to the one given in [1, Section 3.2.3]. We start with a version of the classical Harnack property for the class of positive q-superharmonic functions on X.

Lemma 3.1. Let S_q^+ denote the class of positive q-superharmonic functions on X. Let a, b be any two vertices in X. Then there exist two positive constants A, B such that $As(b) \leq s(a) \leq Bs(b)$ for any $s \in S_q^+$.

Proof. Let $\{a = x_0, x_1, \ldots, x_k = b\}$ be a directed path connecting a to b. Let $s \in S_q^+$. Since $\Delta_q s(a) \leq 0$, we have $[t(a) + q(a)] \geq \sum_{y \sim a} t(a, y)s(y)$; here $t(a) = \sum_{y \sim a} t(a, y)$. In particular, since $x_1 \sim a$, we have $[t(a) + q(a)] \geq t(a, x_1)s(x_1)$. Then starting with $\Delta_q s(x_1) \leq 0$, and proceeding similarly we
find that \([t(x_1) + q(x_1)]s(x_1) \geq t(x_1, x_2)s(x_2)\). A series of such inequalities leads to \(s(a) \geq \frac{t(a, x_1)}{t(a, x_1) + q(a)} \cdot \frac{t(x_1, x_2)}{t(x_1, x_2) + q(x_1)} \cdot \ldots \cdot \frac{t(x_n, b)}{t(x_n, b) + q(x_{n-1})} s(b)\), which is of the form \(s(a) \geq As(b)\). Similarly starting with a path from the vertex \(b\) to the vertex \(a\), we see that \(s(a) \leq Bs(b)\). □

Now by using Theorem 2.2, it is readily shown that \(H_q^+\) is a lattice for the natural order. Write \(E = H_q^+ - H_q^+\) and make \(E\) a topological vector space with the norm: if \(u, v \in E\), then define \(\|u - v\| = \sup |\frac{u(x) - v(x)}{1 + |u(x)| + |v(x)|}|\), \(x \in X\). Then \(E\) is a locally convex metrisable space. Let us fix a vertex \(x_0\) in \(X\) and consider a base \(B\) of the convex cone \(H_q^+\) defined by \(B = \{h \in H_q^+, h(x_0) = 1\}\). By using the Harnack property (Lemma 3.1) and the fact that \(X\) has only a countable number of vertices, it is readily shown that \(B\) is a compact base for the convex cone \(H_q^+\) in \(E\). Then the Choquet integral representation theorem \([\]\) leads to the following theorem. Recall that \(u \in H_q^+\) is said to be minimal if whenever \(v \in H_q^+\) and \(v \leq u\), then \(v\) is proportional to \(u\).

Theorem 1. Let \(h \in H_q^+\). Then there exists a unique positive measure \(\mu\) with support in the set \(\Lambda_1\) of minimal points in \(B\) such that \(h(x) = \int_{\Lambda_1} v(x) d\mu(v)\) for \(x \in X\).

4 Quasi-bounded q-harmonic functions

In the previous section we remarked that to any positive \(q\)-harmonic function \(u(x)\) is associated a unique measure \(\mu\) supported by \(\Lambda_1\). This minimal set \(\Lambda_1\) divides into two disjoint sets, the significance of which was investigated by Parreau [9] in the context of positive harmonic functions on a Riemann surface. In this section we consider the discrete analogues of Parreaus results with reference to positive \(q\)-harmonic functions on an infinite network.

Definition 4.1. A nonnegative harmonic function \(u\) on \(X\) is said to be a **quasi-bounded \(q\)-harmonic function** if and only if \(u\) is the increasing limit of bounded \(q\)-harmonic functions on \(X\); and a non-negative \(q\)-harmonic function \(v\) on \(X\) is said to be a **singular \(q\)-harmonic function** if and only if \(0\) is the only bounded non-negative \(q\)-harmonic function majorised by \(v\).

Remark. The question whether there exists any unbounded solution to the Schrödinger equation \(\Delta h(x) = q(x)h(x)\) will have a positive answer if there exists a singular \(q\)-harmonic function on \(X\). In a parahyperbolic network , any solution to the Schrödinger equation is unbounded and also is a singular harmonic function. Thus in a parahyperbolic network, there are unbounded solutions; this is the discrete analogue of a Myrberg result [4] which states that there always exists a non-negative unbounded solution of \(\Delta u = Pu\) on a
Riemann surface $\mathcal{R} \in O_{PB}$. The Example 1 in Section 2 describes a network in which singular harmonic functions exist, while Example 2 describes a case where there no unbounded q-harmonic functions on X.

Proposition 4.1. Let h be a nonnegative q-harmonic function on X. Then $h = u + v$ where u is a quasi-bounded q-harmonic function and v is a singular q-harmonic function.

Proof. Let \mathcal{B} be the class of all bounded positive q-harmonic functions $b(x)$ majorised by $h(x)$. Note \mathcal{B} that is an increasingly ordered family. For if $b_1, b_2 \in \mathcal{B}$ then the least q-harmonic majorant of $\sup(b_1, b_2)$ is in \mathcal{B} (Theorem 2.2). Since X is a countable set, we can get an increasing sequence $b_n \in \mathcal{B}$ such that $\sup_n b_n(x) = \sup_{b \in \mathcal{B}} b(x)$ for every $x \in X$. As an increasing limit of bounded q-harmonic functions, the function $u(x)$ is a quasi-bounded q-harmonic function; also it is the largest quasi-bounded q-harmonic function majorised by $h(x)$.

Let $v(x) = h(x) - u(x)$. Then $v(x)$ is a singular q-harmonic function on X. For suppose a bounded non-negative q-harmonic function $b(x)$ is majorised by $v(x)$. Then $b(x) + u(x)$ is a quasi-bounded q-harmonic function majorised by $h(x)$; that is $b + u \in \mathcal{B}$. Hence by the construction of $u(x)$, we have $b + u \leq u$. That is $b = 0$ so that $v(x)$ a singular q-harmonic function on X. □

Lemma 4.2. Let w be an upper-bounded q-subharmonic function majorised by a singular q-harmonic function on X. Then $w \leq 0$.

Proof. For w^+ is a bounded q-subharmonic function majorised by v. Hence there exists a bounded q-harmonic function b such that $0 \leq w^+ \leq b \leq v$. Since v is a singular q-harmonic function, $b = 0$. Hence $w \leq 0$. □

Lemma 4.3. Let v_1, v_2 be two singular q-harmonic functions on X. Then $v_1 + v_2$ is a singular q-harmonic function.

Proof. Let $b \geq 0$ be a bounded q-harmonic function such that $b \leq v_1 + v_2$. Then $b - v_2$ is an upper-bounded q-harmonic function majorised by v_1. Hence by Lemma 4.2, which shows that $b = 0$. □

Lemma 4.4. Let h be singular q-harmonic and u be quasi-bounded q-harmonic such that $0 \leq h \leq u$. Then $h = 0$

Proof. Write $u - h = u_1 + v_1$ where u_1 is a quasi-bounded q-harmonic function and v_1 is a singular q-harmonic function (Proposition 4.1). Then $u - u_1 = h + v_1 \geq 0$. Let $u = \lim b_n$. Then $b_n - u_1$ is an upper-bounded q-harmonic function majorised by $h + v_1$ which is a singular q-harmonic function (Lemma 4.3). Hence by Lemma 4.2, $b_n - u_1 \leq 0$ which implies $u = \lim b_n \leq u_1$. Consequently, $u = u_1$ so that $h + v_1 = 0$. That is $v_1 = h = 0$. □
Lemma 4.5. Let h be q-harmonic and u be quasi-bounded q-harmonic such that $0 \leq h \leq u$. Then h is a quasi-bounded q-harmonic function.

Proof. Write $h = u_1 + v_1$ as the sum of a quasi-bounded q-harmonic function and a singular q-harmonic function. Then $v_1 \leq h \leq u$. Hence $v_1 = 0$ by Lemma 4.4. That is, h is a quasi-bounded q-harmonic function on X. □

Proposition 4.6. Let u be a quasi-bounded q-harmonic function and v be a singular q-harmonic function. Then $s = \inf(u, v)$ is a q-potential on X.

Proof. Since s is a nonnegative q-superharmonic function, $s = p + h$ is the sum of a q-potential p and a non-negative q-harmonic function h. Since $h \leq u$, h is a quasi-bounded q-harmonic function (Lemma 4.5); since $h \leq v$, h is a singular q-harmonic function also. Hence $h = 0$ and $s = p$ is a q-potential on X. □

Remark. The above proposition can be interpreted as follows: Let μ, ν be the measures representing u, v respectively in their integral representations. Then μ and ν are mutually singular.

A q-harmonic function $h \geq 0$ is said to be a minimal q-harmonic function on X if and only if for any q-harmonic function w such that $0 \leq w \leq h$, we have $w = \mu u$ for some constant $0 \leq \mu \leq 1$.

Proposition 4.7. A minimal q-harmonic function h is either a bounded q-harmonic function or a singular q-harmonic function.

Proof. Suppose h is an unbounded minimal q-harmonic function. Let b be a bounded q-harmonic function such that $0 \leq b \leq h$. Then $b = \mu h$, which is possible only if $b = 0$. Hence h is a singular q-harmonic function. □

Remark. The above proposition is of interest in the context of describing the support of the measure on the minimal boundary Λ_1 representing a positive q-harmonic function in the Martin-Choquet integral representation.

Theorem 4.8. Let $h > 0$ be a q-harmonic function on X. Then there exist a quasi-bounded q-harmonic function u and a singular q-harmonic function v such that $h = u + v$. This decomposition is unique.

Proof. By Proposition 4.1, $h = u_1 + v_1$ where u_1 is the greatest quasi-bounded q-harmonic function majorised by h and v_1 is a singular q-harmonic function on X. To prove the uniqueness, suppose $h = u_2 + v_2$ be another decomposition as the sum of a quasi-bounded q-harmonic function and a singular q-harmonic function.
Then \(v_2 - v_1 = u_2 - u_1 \geq 0 \) since is the greatest quasi-bounded \(q \)-harmonic function majorised by \(h \). Since the non-negative \(q \)-harmonic function \(v_2 - v_1 \) is majorised by the singular \(q \)-harmonic function \(v_2, v = v_2 - v_1 \) is a singular \(q \)-harmonic function. Now \(u_1 = \lim b_n \) where \(\{b_n\} \) is an increasing sequence of bounded \(q \)-harmonic functions. Hence \(b_n - u_2 \) is an upper bounded \(q \)-harmonic function majorised by \(v \). Hence by Lemma 4.2, \(b_n - u_2 \leq 0 \). Taking limit when \(n \to \infty \), we conclude \(u_1 - u_2 \leq 0 \). Consequently, \(u_1 = u_2 \) and the decomposition is unique. □

Proposition 4.9. Let \(h > 0 \) be a \(q \)-harmonic function on \(X \) with the unique decomposition \(h = u + v \). Then \(u \) is the greatest quasi-bounded \(q \)-harmonic function majorised by \(h \) and \(v \) is the greatest singular \(q \)-harmonic function majorised by \(h \).

Proof. The assertion concerning \(u \) has already been proved in Proposition 4.1. As for \(v \), let \(v_1 \) be a singular \(q \)-harmonic function such that \(v_1 \leq h = u + v \). Let \(u_2 + v_2 = u + v - v_1 \) be the decomposition with \(u_2 \) quasi-bounded \(q \)-harmonic and \(v_2 \) singular \(q \)-harmonic. Then by the uniqueness of decomposition, applied to the equation \(u_2 + (v_2 + v_1) = u + v \), we conclude \(u_2 = u \) and \(v_2 + v_1 = v \). In particular \(v_1 \leq v \), leading to the conclusion that \(v \) is the greatest singular \(q \)-harmonic minorant of \(h \). □

Proposition 4.10. Let \(\{u_n\} \) be an increasing sequence of quasi-bounded \(q \)-harmonic functions. If \(u(x) = \sup_n u_n(x) \) is finite at one vertex in \(X \), then \(u(x) \) is a quasi-bounded \(q \)-harmonic function on \(X \).

Proof. Since \([t(x) + q(x)]u_n(x) = \sum_{y \sim x} t(x, y)u_n(y) \), taking limits we have \([t(x) + q(x)]u(x) = \sum_{y \sim x} t(x, y)u(y) \). Hence if \(u(z) \) is finite at a vertex \(z \in X \), then \(u(y) \) is finite for all \(y \sim z \). This implies \(u(x) \) is finite for all \(x \) in \(X \), since we have assumed that \(X \) is strongly connected. Consequently, \(u(x) \) is a \(q \)-harmonic function on \(X \).

Write \(Q(x) = \sup_{b \in \mathcal{B}} b(x) \) where \(\mathcal{B} \) is the class of all bounded \(q \)-harmonic functions \(b(x) \) majorised by \(u(x) \); we have seen that \(Q(x) \) is a quasi-bounded \(q \)-harmonic function. Now for each \(n \), \(u_n = \sup_m b_{n,m} \) where \(b_{n,m} \) is a non-negative bounded \(q \)-harmonic function majorised by \(u_n \). Then for any fixed vertex \(z \) and \(\epsilon > 0 \), \(u(z) \leq u_n(z) + \epsilon \) for some \(n \). Also \(u_n(z) \leq b_{n,m}(z) + \epsilon \) for some \(m \). Consequently, \(u(z) \leq b_{n,m}(z) + 2\epsilon \leq Q(z) + 2\epsilon \). Since \(\epsilon \) is arbitrary, we conclude that \(u(z) \leq Q(z) \). Again the vertex \(z \) being arbitrary, we conclude that \(u \leq Q \) on \(X \). However by construction \(Q \leq u \). Thus \(u = Q \) is a quasi-bounded \(q \)-harmonic function on \(X \). □

Corollary 4.1. If \(\{u_n\} \) is a sequence of quasi-bounded \(q \)-harmonic functions and if \(u(x) = \sum_n u_n(x) \) is convergent at one vertex in \(X \), then \(u(x) \) is a quasi-bounded \(q \)-harmonic function on \(X \).
Proof. Since a finite sum of quasi-bounded q-harmonic functions is a quasi-bounded q-harmonic function, $v_n = \sum_{m=1}^{n} u_m$ is a quasi-bounded q-harmonic function and hence $u = \sup_n v_n$ is a quasi-bounded q-harmonic function on X.

\[\square \]

5 Quasi-bounded supersolutions of Schrödinger equations

A real-valued function s on X is said to be a supersolution of the Schrödinger equation with potential $q(x)$ if $q(x)s(x) \geq \Delta s(x)$. Actually we refer to this super-solution $s(x)$ as a superharmonic function on X. Let $s \geq 0$ be a q-superharmonic function on X. Then s is the sum of a q-potential p and a non-negative q-harmonic function h on X. Let $h = u + v$ be the unique decomposition h of as the sum of a quasi-bounded q-harmonic function u and a singular q-harmonic function v. Thus every q-superharmonic function $s \geq 0$ is of the form $s = p + u + v$.

In this representation, v is the greatest singular q-harmonic minorant of s. For suppose v_1 is a singular q-harmonic function such that $v_1 \leq s$. Then $v_1 - (u + v) \leq p$ which implies that $v_1 - (u + v) \leq 0$. Since $v_1 \leq u + v$, we have $v_1 \leq v$ (Proposition 4.8). Consequently, v is the greatest singular q-harmonic minorant of s.

Notation. If $s \geq 0$ is a q-superharmonic function on X, then $J(s)$ denotes the greatest singular q-harmonic minorant of s.

Definition 5.1. A non-negative q-superharmonic function s is said to be a quasi-bounded q-superharmonic function if $J(s) = 0$.

Remark.

1. If p is any q-potential on X, then $J(p) = 0$.

2. Let $h \geq 0$ be a q-harmonic function on X. Then is quasi-bounded q-harmonic if and only if $J(h) = 0$; and h is singular q-harmonic if and only if $J(h) = h$.

3. A non-negative q-superharmonic function s is a quasi-bounded q-superharmonic function if and only if s is of the form $s = p + u$ where p is a q-potential and is u a quasi-bounded q-harmonic function.

4. Any q-superharmonic function $s \geq 0$ is the unique sum of a quasi-bounded q-superharmonic function and a singular q-harmonic function.
5. If s_1, s_2 are two non-negative q-superharmonic functions on X such that $s_1 \leq s_2$, then $J(s_1) \leq J(s_2)$.

Lemma 5.1. \{v_n\} be a sequence of singular q-harmonic functions on X. Let $v(x) = \sum_n v_n(x)$. If $v(x)$ is finite at one vertex, then $v(x)$ is a singular q-harmonic function on X.

Proof. If $v(x)$ is finite at one vertex, then $v(x)$ is real-valued and q-harmonic on the strongly connected network X. To show that $v(x)$ is singular q-harmonic, suppose b is a bounded q-harmonic function such that $0 \leq b \leq v$ on X. Then $[b(x) - \sum_2^\infty v_n(x)]^+ \leq v_1(x)$. Hence, by Lemma 4.2, $b(x) \leq \sum_2^\infty v_n(x)$. Proceeding similarly we show that for any positive integer m, $b(x) \leq \sum_m^\infty v_n(x)$. Since $\sum_n v_n$ is convergent, we conclude that $b(x) = 0$ for any $x \in X$. This means that $v(x)$ is a singular q-harmonic function on X. \square

Lemma 5.2. Let \{v_n\} be an increasing sequence of singular q-harmonic functions such that $v(x) \lim_n v_n(x)$ is finite at some vertex in X. Then $v(x)$ is a singular q-harmonic function on X.

Proof. For any $n \geq 1$, write $u_n = v_n - v_{n-1}$, with $v_0 = 0$. Then u_n is a nonnegative q-harmonic function majorised by a singular q-harmonic function, hence u_n is a singular q-harmonic function on X. Since $v(x) = \lim_n v_n(x) = \sum_1^\infty u_n(x)$, by Lemma 5.1, $v(x)$ is a singular q-harmonic function on X. \square

Lemma 5.3. Let \mathcal{C} be the set of all singular q-harmonic functions majorised by a non-negative q-superharmonic function s on X. Then $J(s) = \sup_{v \in \mathcal{C}} v$.

Proof. Let $w(x) = \sup_{v \in \mathcal{C}} v(x)$. Note that \mathcal{C} is an increasingly ordered family. For, if $v_1, v_2 \in \mathcal{C}$ then the least q-harmonic majorant v_3 of $\sup(v_1, v_2)$ is such that $v_3 \leq v_1 + v_2$. Since $v_1 + v_2$ is a singular q-harmonic function, v_3 is also singular q-harmonic and hence $v_3 \in \mathcal{C}$. Since \mathcal{C} is increasingly ordered and X is a countable set, there exists an increasing sequence $v_n \in \mathcal{C}$ such that $\lim_n v_n(x) = \sup_{v \in \mathcal{C}} v(x) = w(x)$. Hence by Lemma 5.2, $w(x)$ is a singular q-harmonic function and clearly it is the greatest singular q-harmonic minorant of $s(x)$. That is, $J(s) = \sup_{v \in \mathcal{C}} v$. \square

Proposition 5.4. Let \{s_n\} be a sequence of nonnegative q-superharmonic functions on X. Let $s(x) = \sum_n s_n(x)$ and $s(z)$ is finite at some vertex z. Then $s(x)$ is q-superharmonic on X and $J(\sum_n s_n) = \sum_n J(s_n)$. \square

Proof. Let $s_n = p_n + u_n + v_n$ where p_n is a q-potential, u_n is a quasi-bounded q-superharmonic function and v_n is a singular q-harmonic function. The assumption that $s(z)$ is finite implies that $p = \sum_n p_n$ is a q-potential, $u = \sum_n u_n$ is a quasi-bounded q-harmonic function (Corollary 4.1) and $v = \sum_n v_n$ is a singular q-harmonic function (Lemma 5.1) and $s = p + u + v$. Hence $J(s) = v = \sum_n v_n = \sum_n J(s_n)$. \square
Corollary 5.1. Let \(\{w_n\}\) be a sequence of quasi-bounded \(q\)-superharmonic function on \(X\). If \(\sum_n w_n(z)\) is finite for some vertex \(z \in X\), then \(w(x) = \sum_n w_n(x)\) is a quasi-bounded \(q\)-superharmonic function on \(X\).

Proof. Since \(J(w_n) = 0\) for each \(n\), by the above proposition \(J(w) = 0\). That is, \(w(x)\) is a quasi-bounded \(q\)-superharmonic function on \(X\). □

Proposition 5.5. Let \(s \geq 0\) be a \(q\)-superharmonic function on \(X\). Then \(s\) is a quasi-bounded \(q\)-superharmonic function if and only if \(\inf(s, v)\) is a \(q\)-potential for every singular \(q\)-harmonic function on \(X\).

Proof. Suppose \(s\) is a quasi-bounded \(q\)-harmonic function. Let \(h \geq 0\) be a \(q\)-harmonic function such that \(h \leq \inf(s, v)\) for a singular \(q\)-harmonic function \(v\). Then implies that \(h\) is a quasi-bounded \(q\)-harmonic function; further \(h \leq v\) implies that \(h = 0\). Hence \(\inf(s, v)\) is a \(q\)-potential.

On the other hand, suppose \(s \geq 0\) is a \(q\)-superharmonic function such that \(\inf(s, v)\) is a \(q\)-potential for any singular \(q\)-harmonic function \(v\). Now \(s = w + v_0\) where \(w\) is a quasi-bounded \(q\)-superharmonic function and \(v_0\) is a singular \(q\)-harmonic function. Since \(v_0 = \inf(s, v_0)\) where the right side is a \(q\)-potential by hypothesis and the left side is a non-negative \(q\)-harmonic function, we conclude \(v_0 = 0\) so that \(s = w\) is a quasi-bounded \(q\)-superharmonic function on \(X\). □

Acknowledgement. The authors gratefully thank Prince Sultan University in Saudi Arabia for the research grant IBRP-OYP-2013-10-1.

References

 http://dx.doi.org/10.1007/978-3-642-21399-1

 http://dx.doi.org/10.1090/s0002-9947-1974-0379872-4

Received: March 30, 2016; Published: May 12, 2016