Dodecagon Quadrangle Systems Having
the Most Large Spectrum

Mario Gionfriddo and Lucia Marino

Department of Mathematics and Comp. Sciences
University of Catania, Catania, Italy

Copyright © 2016 Mario Gionfriddo and Lucia Marino. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A dodecagon quadrangle is the graph consisting of two cycles: a 12-cycle \((x_1, x_2, ..., x_{12})\) and a 4-cycle \((x_1, x_4, x_7, x_{10})\). A dodecagon quadrangle system \([DQS]\) of order \(v\) and index \(\lambda\) \([DQS_\lambda]\) is a pair \(\Sigma = (X, B)\), where \(X\) is a finite set of \(v\) vertices and \(B\) is a collection of edge disjoint dodecagon quadrangles (called blocks) which partitions the edge set of \(\lambda K_v\), the complete multigraph with vertex set \(X\). In [12] the authors determined the spectrum of \(DQSs\) having index \(\lambda = 1\) and the spectrum of perfect \(DQSs\) in all the cases. In [14] we determine the spectrum of \(DQSs\) of index \(\lambda = 2^n(2h + 1) > 1\), for any \(h \in \mathbb{N}\) and \(n = 0, 1, 2, 3\). In this paper we complete the determination of the spectrum in all the remaining cases.

Mathematics Subject Classification: 05B05

Keywords: Graph Designs; Dodecagon Systems; Spectrum

1 Introduction

In this paper we complete the research begun in [14], determining completely the spectrum of Dodecagon Quadrangle Systems of any index.

We remember that, in these last years, some design-theorists have studied, \(G\)-decompositions of the complete multigraph \(\lambda K_v\) [1].
In many cases the graph G is a polygon with some chords, forming an inside polygon whose sides joining vertices at distance two. Hexagon triple systems and hexagon triple systems have been studied respectively in [22],[23], while in [2] octagon triple systems are considered. The main problem is generally to determine the spectrum of the corresponding systems and study problems of embedding. For a short historical introduction the reader can see the paper [14], with all the papers cited in the References.

In [12] the authors defined dodecagon quadrangles [DQ-graph], dodecagon quadrangle systems [DQS], perfect dodecagon quadrangle systems [PDQS], determining the spectrum for DQSs having index $\lambda = 1$, and for perfect dodecagon quadrangle systems in all the cases. In these G-designs, G is a polygon of 12 vertices with 4 chords which divide it into five 4-cycles. Indeed, a dodecagon quadrangle is the graph formed by a cycle $C_{12} = (x_1, x_2, \ldots, x_{12})$ with the four chords $\{x_1, x_4\}, \{x_4, x_7\}, \{x_7, x_{10}\}, \{x_{10}, x_1\}$. Such a graph it is denoted by $[(x_1), x_2, x_3, (x_4), x_5, x_6, (x_7), x_8, x_9, (x_{10})x_{11}, x_{12}]$ [12][1].

A dodecagon quadrangle system of order v and index λ [DQS$_\lambda$] is a pair $\Sigma = (X, B)$, where X is a finite set of v vertices and B is a collection of edge disjoint dodecagon quadrangles (called blocks) which partitions the edge set of λK_v, with vertex set X [12][1].

In [12] the spectrum of DQSs having index $\lambda = 1$ has been completely determined, as follows:

Theorem 1.1 [12]: There exists a DQS of order v and index 1 if and only if: $v \equiv 1 \mod 32, v \geq 33$.

In [14] we determine the spectrum of DQSs of index $\lambda \equiv 2h \mod 4h$, for $h = 1, 2, 4$. This means that we have considered there the cases: λ odd, $\lambda = 2(2h + 1)$, $\lambda = 4(2h + 1)$, $\lambda = 8(2h + 1)$, for each $h \in N$, obtaining the following results:

Theorem 1.2 : There exists a DQS of order v and index λ odd if and only if $v \equiv 1 \mod 32, v \geq 33$.

Theorem 1.3 : There exists a DQS of order v and index $\lambda = 2(2h + 1)$, for any integer $h > 0$, if and only if $v \equiv 1 \mod 16, v \geq 17$.

Theorem 1.4 : There exists a DQS of order v and index $\lambda = 4(2h + 1)$, for any integer $h > 0$, if and only if $v \equiv 1 \mod 8, v \geq 17$.

Theorem 1.5 : There exists a DQS of order v and index $\lambda = 8(2h + 1)$, for any integer $h > 0$, if and only if $v \equiv 1 \mod 4, v \geq 13$.

In this paper we complete the determination of the spectrum in all the remaining cases, which are the DQSs having index \(\lambda = 16(2h+1) \), for any \(h \in \mathbb{N} \). In what follows, we say that a block \(B \) of a DQS \(\Sigma = (X, \mathcal{B}) \) has multiplicity \(r \) if in \(\mathcal{B} \) there are exactly \(r \) blocks \(B_1, B_2, ..., B_r \), such that \(B = B_1 = B_2 = ... = B_r \). In these cases, we will indicate such a situation by \(B^{(r)} \).

2 DQSs of index \(\lambda = 16 \)

The following Theorem is proved in [14].

Theorem 2.1 : Let \(\Sigma = (X, \mathcal{B}) \) a DQS of order \(v \) and index \(\lambda \).

1. If \(\lambda \) is odd, then \(v \equiv 1 \mod 32 \), \(v \geq 33 \).
2. If \(\lambda \) is even, then for \(\lambda = 2^i(2h+1) \), \(i > 0, h \geq 0, i, h \) integers:
 1. if \(i = 1, 2, 3 \), then \(v \equiv 1 \mod 2^{5-i} \) and \(v \geq 17 \) for \(i = 1, 2, v \geq 13 \) for \(i = 3 \);
 2. if \(i \geq 4 \), then \(v \equiv 1 \mod 2 \), \(v \geq 13 \).

Easily, it follows:

Theorem 2.2 : Let \(\Sigma = (X, \mathcal{B}) \) a DQS of order \(v \) and index \(\lambda = 16k + 1 \) for any integer \(k > 0 \).

Then, necessarily: \(v \geq 13 \).

Remark : Observe that, if for any admissible \(v \) there exists a DQS \(\Sigma \) of order \(v \) and index 16, then we can say that there exists a DQS \(\Sigma' \) having the same order \(v \) of \(\Sigma \) and index 16h, for any \(h \in \mathbb{N} \). Indeed, \(\Sigma' \) can be obtained from \(\Sigma \) by a repetition of blocks.

Therefore, in what follows, we will examine the possible existence of DQSs of index \(\lambda = 16 \) and order \(v \geq 13 \).

3 The cases \(v = 15, 19, 23, 27 \)

Theorem 3.1 : There exist DQSs of order \(v = 15 \) and index \(\lambda = 16 \).

Proof. A possible DQS \(\Sigma = (X, \mathcal{B}) \), of order \(v = 15 \) and index \(\lambda = 16 \), has \(|\mathcal{B}| = 15 \cdot 7 \) blocks. Therefore it can be obtained by difference method, defining 7 base-blocks. The difference-set of \(Z_{15} \) is \(D(15) = \{1, 2, 3, ..., 7\} \). Consider the following DQSs:

\[
B_1 = [(0), 6, 14, (8), 13, 7, (2), 11, 3, (9), 4, 10],
B_{2,3} = [(0), 1, 6, (3), 8, 9, (7), 10, 12, (4), 11, 5]_{(2)},
\]
If $X = Z_{15}$ and \mathcal{B} is the family of all the translates of $B_1, B_{2,3}, B_{4,5}, B_{6,7},$ fixed as base-blocks, then we can verify that $\Sigma = (X, \mathcal{B})$ is a DQS of order $v = 15$ and index $\lambda = 16$.

Theorem 3.2: There exist $DQSs$ of order $v = 19$ and index $\lambda = 16$.

Proof. A possible DQS $\Sigma = (X, \mathcal{B})$, of order $v = 19$ and index $\lambda = 16$, has $|\mathcal{B}| = 19 \cdot 9$ blocks. Therefore it can be obtained by difference method, defining 9 base-blocks. The difference-set of Z_{19} is $D(19) = \{1, 2, 3, \ldots, 9\}$. Consider the following DQS:

\[
\begin{align*}
B_1 &= [(0), 12, 2, (9), 11, 14, (17), 10, 1, (8), 16, 5], \\
B_2 &= [(0), 13, 3, (9), 11, 14, (17), 10, 1, (8), 16, 5], \\
B_3 &= [(0), 13, 1, (9), 14, 7, (17), 8, 2, (12), 18, 6], \\
B_4 &= [(0), 1, 2, (3), 5, 7, (9), 8, 11, (4), 12, 6]_2, \\
B_5 &= [(0), 6, 10, (5), 8, 11, (1), 12, 9, (7), 3, 2]_2, \\
B_6 &= [(0), 5, 12, (7), 9, 10, (11), 20, 14, (8), 13, 2]_2, \\
B_7 &= [(0), 6, 12, (9), 17, 19, (11), 4, 18, (10), 13, 3]_2, \\
B_8 &= [(0), 17, 21, (5), 9, 10, (11), 8, 3, (6), 13, 12]_2, \\
B_9 &= [(0), 3, 12, (1), 7, 15, (11), 6, 4, (2), 13, 9]_2.
\end{align*}
\]

If $X = Z_{19}$ and \mathcal{B} is the family of all the translates of $B_1, B_2, B_3, B_{4,5}, B_{6,7}, B_{8,9},$ fixed as base-blocks, then we can verify that $\Sigma = (X, \mathcal{B})$ is a DQS of order $v = 19$ and index $\lambda = 16$.

Theorem 3.3: There exist $DQSs$ of order $v = 23$ and index $\lambda = 16$.

Proof. A possible DQS $\Sigma = (X, \mathcal{B})$, of order $v = 23$ and index $\lambda = 16$, has $|\mathcal{B}| = 23 \cdot 11$ blocks. Therefore it can be obtained by difference method, defining 11 base-blocks. The difference-set of Z_{23} is $D(23) = \{1, 2, 3, \ldots, 10, 11\}$. Consider the following DQS:

\[
\begin{align*}
B_1 &= [(0), 12, 8, (3), 10, 2, (11), 19, 15, (4), 6, 14], \\
B_2 &= [(0), 10, 20, (7), 17, 4, (14), 15, 2, (16), 6, 13], \\
B_3 &= [(0), 11, 22, (10), 14, 18, (13), 1, 12, (4), 16, 15], \\
B_4 &= [(0), 5, 12, (7), 9, 10, (11), 20, 14, (8), 13, 2]_2, \\
B_5 &= [(0), 6, 12, (9), 17, 19, (11), 4, 18, (10), 13, 3]_2, \\
B_6 &= [(0), 17, 21, (5), 9, 10, (11), 8, 3, (6), 13, 12]_2, \\
B_7 &= [(0), 3, 12, (1), 7, 15, (11), 6, 4, (2), 13, 9]_2.
\end{align*}
\]

If $X = Z_{23}$ and \mathcal{B} is the family of all the translates of $B_1, B_2, B_3, B_{4,5}, B_{6,7}, B_{8,9}, B_{10,11},$ fixed as base-blocks, then we can verify that $\Sigma = (X, \mathcal{B})$ is a DQS of order $v = 23$ and index $\lambda = 16$.

\[
B_{15} = [(0), 4, 3, (5), 12, 8, (7), 9, 10, (6), 2, 13]_2, \\
B_{6,7} = [(0), 2, 7, (5), 1, 4, (11), 8, 9, (3), 6, 14]_2.
\]
Theorem 3.4: There exist DQSs of order $v = 27$ and index $\lambda = 16$.

Proof. A possible DQS $\Sigma = (X, \mathcal{B})$, of order $v = 27$ and index $\lambda = 16$, has $|\mathcal{B}| = 27 \cdot 13$ blocks. Therefore it can be obtained by difference method, defining 13 base-blocks. The difference-set of Z_{27} is $D(27) = \{1, 2, 3, ..., 13\}$. Consider the following DQSs:

$$B_1 = [(0), 10, 23, (9), 25, 11, (2), 19, 3, (13), 7, 14],$$
$$B_2 = [(0), 18, 24, (11), 26, 14, (1), 16, 2, (12), 22, 10],$$
$$B_3 = [(0), 9, 23, (12), 22, 7, (24), 17, 3, (10), 25, 13],$$
$$B_{4,5} = [(0), 3, 12, (1), 7, 15, (11), 6, 4, (2), 13, 9]_2,$$
$$B_{6,7} = [(0), 8, 12, (3), 2, 9, (11), 19, 15, (4), 16, 5]_2,$$
$$B_{8,9} = [(0), 15, 19, (5), 9, 10, (11), 8, 3, (6), 13, 12]_2,$$
$$B_{10,11} = [(0), 5, 12, (7), 9, 10, (11), 20, 14, (8), 13, 2]_2,$$
$$B_{12,13} = [(0), 6, 12, (9), 17, 19, (11), 4, 18, (10), 13, 3]_2.$$

If $X = Z_{27}$ and \mathcal{B} is the family of all the translates of $B_1, B_2, B_3, B_{4,5}, B_{6,7}, B_{8,9}, B_{10,11}, B_{12,13}$, fixed as base-blocks, then we can verify that $\Sigma = (X, \mathcal{B})$ is a DQS of order $v = 27$ and index $\lambda = 16$. \qed

4 Construction $v \to v + 16$

In this Section we give a construction for DQSs.

Theorem 4.1: A DQS of order $v + 16$ and index $\lambda = 16$ can be constructed from a DQS of order v and index $\lambda = 16$.

Proof. Let $\Sigma_1 = (X, \mathcal{B}_1)$ be a DQS of index $\lambda = 16$ and order v odd, $v \geq 13$, and let $\Sigma_2 = (Y, \mathcal{B}_2)$ be a DQS of index $\lambda = 16$ and order $v = 17$, such that $|X \cap Y| = 1$. Further, let

$$X' = \{x_i, y_i, z_i, t_i : i = 1, 2, 3, 4\},$$
$$X = X' \cup \{\infty\},$$
$$Y = Z_{2k} \cup \{\infty\}.$$

Define in $X \cup Z_{2k}$ the family \mathcal{F} of DQSs having for blocks:

$$[(x_1), i + 3, z_3, (i + 4), t_3, i + 5, (y_1), i, x_3, (i + 1), y_3, i + 2]_4,$$
$$[(z_1), i + 3, z_3, (i + 4), t_3, i + 5, (t_1), i, x_3, (i + 1), y_3, i + 2]_4,$$
\[(x_2), i + 3, z_1, (i + 4), t_4, i + 5, (y_2), i, x_4, (i + 1), y_4, i + 2\]_{(4)},

\[(z_2), i + 3, z_1, (i + 4), t_4, i + 5, (t_2), i, x_4, (i + 1), y_4, i + 2\]_{(4)},

for every \(i = 0, 1, 2, ..., 2k\).

If \(B = B_\infty \cup B_\subset \cup F\), it is possible to verify that \(\Sigma = (X \cup Y, B)\) is a DQS of order \(v + 16\) and index \(\lambda = 16\). Therefore, the statement is proved. □

5 Main Results

We have the conclusive results.

Theorem 5.1: For every \(v \equiv 1 \mod 4, v \geq 13\), there exists a DQS of order \(v\) and index \(\lambda = 16(2h + 1)\), for any \(h \in N\).

Proof. The statement follows from Theorem 1.5, proved in [14], by a repetition of blocks. □

Theorem 5.2: For every \(v \equiv 3 \mod 4, v \geq 15\), there exists a DQS of order \(v\) and index \(\lambda = 16\).

Proof. The statement follows from Theorems 3.1, 3.2, 3.3, 3.4, for which there exist DQSs having order \(v = 15, 19, 23, 27\) and index \(\lambda = 16\), and from Theorem 4.1, for which, starting from a DQS of index \(\lambda = 16\) and order \(v\), \(v\) odd, \(v \geq 13\), it is possible to construct a DQS of index \(\lambda = 16\) and order \(v + 16\). □

Theorem 5.3: For every \(v \equiv 3 \mod 4, v \geq 15\), there exists a DQS of order \(v\) and index \(\lambda = 16(2h + 1)\).

Proof. From Theorem 5.2, by a repetition of blocks. □

Collecting together the previous results, we have the following conclusive result:

Theorem 5.4: There exist DQS of order \(v\) and index \(\lambda = 16(2h + 1)\) if and only if \(v \equiv 1 \mod 2, v \geq 13\).

Acknowledgements. This research has been supported by PRIN 2012 (MIUR), GNSAGA (INDAM).
Dodecagon quadrangle systems having the most large spectrum

References

Received: March 2, 2016; Published: April 21, 2016