Intersections among $P^{(3)}(1, 5)$-Designs

Mario Gionfriddo and Salvatore Milici

Department of Mathematics and Computer Sciences
University of Catania, Catania, Italy

Copyright © 2016 Mario Gionfriddo and Salvatore Milici. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A path-hypergraph $P^{(3)}(1, 5)$ is the uniform hypergraph of rank 3, having five vertices and two edges with exactly one vertex in common. In this paper, the intersection problem among $P^{(3)}(1, 5)$-designs of order v is studied, determining the intersection-set $J(v)$ for every admissible v.

Mathematics Subject Classification: 05B05, 05C05

Keywords: Hypergraph $P^{(3)}(1, 5)$; Hypergraph Designs

1 Introduction

Let $K^{(3)}_v = (X, \mathcal{E})$ be the complete hypergraph, uniform of rank 3, defined in a vertex set $X = \{x_1, x_2, ..., x_v\}$. This means that $\mathcal{E} = \mathcal{P}_3(X)$, the family of all 3-subsets of X. Let $H^{(3)}$ be a subhypergraph of $K^{(3)}_v$.

An $H^{(3)}$-design, or an $H^{(3)}$-decomposition of $K^{(3)}_v$, is a pair $\Sigma = (X, \mathcal{B})$, where \mathcal{B} is a partition of the edge-set $\mathcal{P}_3(X)$ of $K^{(3)}_v$ into subsets all of which yields subhypergraphs isomorphic to $H^{(3)}$. The order v of an $H^{(3)}$-design $\Sigma = (X, \mathcal{B})$ is the cardinality of $|X|$. The hypergraphs belonging to \mathcal{B} are called the blocks of Σ. If $H^{(3)} = K^{(3)}_4$, an $H^{(3)}$-design is a Steiner Quadruple System.

Two $H^{(3)}$-designs $\Sigma_1 = (X, \mathcal{B}_1)$ and $\Sigma_2 = (X, \mathcal{B}_2)$, defined on the same set X, are said to have intersection in k blocks provided $|\mathcal{B}_1 \cap \mathcal{B}_2| = k$. If $k = 0$, Σ_1 and Σ_2 are said disjoint. The intersection problem for Steiner systems has been studied by C.C.Lindner and A.Rosa for STSs [19], while M.Gionfriddo and C.C.Lindner studied intersections among SQSs [17]. Other
types of intersections had been studied mainly among STSs and SQSs, but also among other G-designs, as it is possible to see in References.

We recall that there exists an 1-factorization $\mathcal{F} = \{F_1, F_2, ..., F_{v-1}\}$ of the complete graph K_v defined in X (or simply an 1-factorization of X), into the 1-factors $F_1, F_2, ..., F_{v-1}$, if and only if v is even. In the case v odd, $v = 2k + 1$, there exists a partition \mathcal{F}^* of the edge-set of K_v into $2k + 1$ classes $F_1, F_2, ..., F_v$, such that every class contains k pairwise disjoint edges and, for every $x_i \in X$, $i = 1, 2, ..., v$, the vertex-set of F_i is $X - \{x_i\}$. When v is odd, we call the partition \mathcal{F}^* an 1-factorization of K_v (of X), into the 1-factors $F_1, F_2, ..., F_v$.

In this paper we study the intersection problem for $P^{(3)}(1, 5)$-designs, where $P^{(3)}(1, 5) = (V, \mathcal{E})$ is the path-hypergraph, having 5 vertices, 2 triples as edges, and exactly one vertex in common between the two triples of \mathcal{E}. In other words, if $V = \{x, y_1, y_2, y_3, y_4\}$, then $\mathcal{E} = \{\{x, y_1, y_2\}, \{x, y_3, y_4\}\}$. In what follows, such a hypergraph will be indicated by $[y_1, y_2, (x), y_3, y_4]$ [1]. Further, to be clear, we will call 3-edges the triples of \mathcal{E} and edges the pairs contained in the triples of \mathcal{E}.

Observe that the spectrum of $P^{(3)}(1, 5)$-designs has already known. It has been determined in [3], where it is proved that:

Theorem 1.1: There exists a $P^{(3)}(1, 5)$-design of order v if and only if $v \equiv 0, 1, 2 \pmod{4}$, $v \geq 5$.

Following the same symbolism and terminology of [1][5][15][17], if v is an admissible value for the existence of a $P^{(3)}(1, 5)$-design, it will be:

- $p_v = v(v - 1)(v - 2)/12$: number of blocks of any $P^{(3)}(1, 5)$-design;
- $I(v) = \{0, 1, 2, ..., p_v - 2, p_v\}$: set of all the possible values k for which there exist two $P^{(3)}(1, 5)$-designs having exactly k blocks in common;
- $J(v)$: set of all $h \in N$ for which there are two $P^{(3)}(1, 5)$-designs having exactly k blocks in common.

Note that it is always: $p_v - 1 \notin J(v)$, $p_v \in J(v)$, $J(v) \subseteq I(v)$. Further, consider that in [15] the following results are proved:

Theorem 1.2: $J(5) = \{1, 5\} = I(5) \setminus \{0, 2, 3\}$, $J(6) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 10\} = I(6)$, $J(8) = \{0, 1, 2, ..., 26, 28\} = I(8)$.

2 Construction

$v = 4h \rightarrow v' = 4h + 4$

In this section we describe a construction $v = 4h \rightarrow v' = 4h + 4$, by which we will study the intersections among $P^{(3)}(1, 5)$-designs having order a multiple of 4.
Construction \(v = 4h \rightarrow v' = 4h + 4 \)

Let \(\Sigma = (X, \mathcal{B}) \) be a \(P^{(3)}(1,5) \)-design of order \(v = 4h \), for any \(h \in N, h \geq 2 \), defined in \(X = \{1, 2, ..., v\} \). Further, let \(Y = \{A, B, C, D\} \) be a set such that \(X \cap Y = \emptyset \). Define the following families of \(P^{(3)}(1,5) \)s.

1) Family \(\Delta \) - Blocks of type \(\Delta \):

\[
\Delta(1) = \{[C, D, (A), 1, B], [A, D, (B), 1, C], [A, B, (C), 1, D],
[B, C, (D), 1, A], [A, C, (1), B, D]\};
\]

and, for every \(x \in X - \{1\} \):

\[
\Delta(x) = \{[A, B, (x), C, D], [A, C, (x), B, D], [A, D, (x), B, C]\}.
\]

Further: \(\Delta = \bigcup_{x \in X} \Delta(x) \).

2) Family \(\Omega \) - Blocks of type \(\Omega \):

Consider a factorization \(\mathcal{F} = \{F_1, F_2, ..., F_{4h-1}\} \) of \(K_{4h} \) defined in \(X \). Since, for every \(i = 1, 2, ..., 4h - 1 \), every factor \(F_i \in \mathcal{F} \) has cardinality \(2h \), it is possible to define in each of them a partition \(\Pi_i = \{B_{i,1}, B_{i,2}, ..., B_{i,h-1}, B_{i,h}\} \), in which every class \(B_{i,j} \) has cardinality \(2 \). Let:

\[
B_{i,1} = \{\{x_{i,1}, y_{i,1}\}, \{z_{i,1}, t_{i,1}\}\},
\]

\[
B_{i,2} = \{\{x_{i,2}, y_{i,2}\}, \{z_{i,2}, t_{i,2}\}\},
\]

............................

\[
B_{i,h} = \{\{x_{i,h}, y_{i,h}\}, \{z_{i,h}, t_{i,h}\}\}.
\]

For every \(y \in Y = \{A, B, C, D\} \) and for every \(i = 1, 2, ..., 4h - 1 \), define the following families of \(P^{(3)}(1,5) \)s.

\[
\Omega(y, i):
\]

\[
[x_{i,1}, y_{i,1}, (y), z_{i,1}, t_{i,1}], [x_{i,2}, y_{i,2}, (y), z_{i,2}, t_{i,2}],
\]

\[
[x_{i,3}, y_{i,3}, (y), z_{i,3}, t_{i,3}], [x_{i,4}, y_{i,4}, (y), z_{i,4}, t_{i,4}],
\]
[x_{i,h-1}, y_{i,h-1}, (y), z_{i,h-1}, t_{i,h-1}], [x_{i,h}, y_{i,h}, (y), z_{i,h}, t_{i,h}].

Further: \(\Omega(y) = \bigcup_{i=1}^{4h-1} \Omega(y, i) \) and \(\Omega = \bigcup_{y \in Y} \Omega(y) \).

If \(X' = X \cup Y \), \(B' = B \cup \Delta \cup \Omega \), we can verify that \(\Sigma' = (X', B') \) is a \(P^{(3)}(1, 5) \)-design of order \(v' = 4h + 4 \).

Constructions \(v \to v + 1 \), for \(v \equiv 0 \) or \(1 \mod 4 \)

Let \(\Sigma = (X, B) \) be a \(P^{(3)}(1, 5) \)-design of order \(v = 4h \geq 8 \) or \(v = 4h + 1 \geq 5 \), defined in \(X = \{1, 2, ..., v\} \). Further, let \(A \) be a vertex not belonging to \(X \). Define in \(X \) a factorization \(F = \{F_1, F_2, ..., F_{4h-1}\} \) of \(K_{4h} \) [respectively \(G = \{G_1, G_2, ..., G_{4h+1}\} \) of \(K_{4h+1} \) in the case \(v = 4h + 1 \)]. Observe that, for every \(i = 1, 2, ..., 4h - 1 \) [resp. \(i = 1, 2, ..., 4h + 1 \)], every factor \(F_i \in F \) \([G_i \in G] \) has cardinality \(2h \). Therefore, we can consider a partition \(\Pi_i = \{B_{i,1}, B_{i,2}, ..., B_{i,h-1}, B_{i,h}\} \), in which every class \(B_{i,j} \) has cardinality \(2 \) and define the families \(\Omega(A, i), \Omega(A), \Omega \), as in the previous Construction \(v \to v + 4 \). If \(X' = X \cup Y \), \(B' = B \cup \Omega \), we can verify that \(\Sigma' = (X', B') \) in a \(P^{(3)}(1, 5) \)-design of order \(v' = 4h + 1 \) [resp. \(4h + 2 \)].

Observe that the families \(\Delta \) and \(\Omega \), in both Constructions, generate combinatorial structures in \(X \), in which “for every triple of vertices \(x, y, z \) there exists at most one block \(P^{(3)}(1, 5) \) containing them as 3-edge”.

Usually, these structures are called *partial designs*. Therefore, the families \(\Delta, \Omega \) generate *partial \(P^{(3)}(1, 5) \)-designs*. Further, if \(\Sigma' = (V, C') \), \(\Sigma'' = (V, C'') \) are two partial \(P^{(3)}(1, 5) \)-designs, both defined in \(V \), such that a triple \(\{x, y, z\} \subseteq V \) is a 3-edge of a block \(C \in C' \) if and only if \(\{x, y, z\} \) is a 3-edge of a block \(C \in C'' \), then we say that \(\Sigma', \Sigma'' \) are *mutually balanced*.

3 \(\Omega \) - Partial \(P^{(3)}(1, 5) \)-designs

In this section we determine all the possible intersections among *mutually balanced* partial \(P^{(3)}(1, 5) \)-designs of type \(\Omega \). We will indicate by:

- \(J_v(\Omega) \) the set of all possible integers \(r \) such that there exist two mutually balanced partial \(P^{(3)}(1, 5) \)-designs of type \(\Omega \), defined on \(v = 4h \) or \(v = 4h + 1 \) vertices, having exactly \(r \) blocks in common;
- and \(J_v(\Omega, y) \) the set of all possible integers \(r \) such that there exist two mutually balanced partial \(P^{(3)}(1, 5) \)-designs of type \(\Omega \), defined on \(v = 4h \) or
v = 4h + 1 vertices, containing in the central position the vertex y and having exactly r blocks in common.

Theorem 3.1: \(J_{4h}(\Omega, y) = \{0, 1, 2, ..., 4h^2 - h - 2, 4h^2 - h\} \), for every \(h \geq 2 \).

Proof. Let \(h \) be a positive integer, \(h \geq 3 \). Of course, \(4h^2 - h \in J_{4h}(\Omega, y) \). Fixed any index \(i = 1, 2, ..., 4h - 1 \) and a vertex \(y \in Y = \{A, B, C, D\} \), let \(\Omega(y, i, j) \) be the family of \(P^{(3)}(1, 5)s \), where \(j = 1, 2, ..., h-2, h \), having the blocks:

\[
[x_{i,1}, y_{i,1}, (y), z_{i,1}, t_{i,1}], [x_{i,2}, y_{i,2}, (y), z_{i,2}, t_{i,2}],......
\]
\[
..., [x_{i,j}, y_{i,j}, (y), z_{i,j}, t_{i,j}],
\]
\[
[x_{i,j+1}, y_{i,j+1}, (y), z_{i,j+2}, t_{i,j+2}], [x_{i,j+2}, y_{i,j+2}, (y), z_{i,j+3}, t_{i,j+3}],......
\]
\[
[x_{i,h-1}, y_{i,h-1}, (y), z_{i,h}, t_{i,h}], [x_{i,h}, y_{i,h}, (y), z_{i,j+1}, t_{i,j+1}].
\]

We can observe that the families \(\Omega(y, i) \) and \(\Omega(y, i, j) \) have exactly the same first \(j \) blocks in common (the others are all different). It follows that, for every \(i = 1, 2, ..., 4h - 1 \), it is possible to choose \(j = 1, 2, ..., h - 2, h \) in such a way that:

\[
|\Omega(y, 1) \cap \Omega(y, 1)| = 0, 1, 2, ..., h - 2, h;
\]
\[
|\Omega(y, 2) \cap \Omega(y, 2)| = 0, 1, 2, ..., h - 2, h;
\]
\[
.................................
\]
\[
|\Omega(y, h) \cap \Omega(y, h)| = 0, 1, 2, ..., h - 2, h;
\]

where, for \(h = 2 \), we have only 0,2. Therefore, it is possible to construct two mutually balanced partial \(P^{(3)}(1, 5)s \)-designs of type \(\Omega \), having exactly \(k \) blocks in common, for every \(k = 0, 1, 2, ..., h(4h - 1) - 2, h(4h - 1) \). Hence \(J_{4h}(\Omega, y) = \{0, 1, 2, ..., 4h^2 - h - 2, 4h^2 - h\} \).

Theorem 3.2: \(J_{4h+1}(\Omega, y) = \{0, 1, 2, ..., 4h^2 + h - 2, 4h^2 + h\} \) for every \(h \geq 2 \).

Proof. Following the same proof of the previous Theorem, we arrive to the same conclusion.
4 Δ - Partial $P^{(3)}(1,5)$-designs

In this section we determine all the possible intersections among mutually balanced partial $P^{(3)}(1,5)$-designs of type Ω. We will indicate by:

- $J_\nu(\Delta)$ the set of all possible integers r such that there exist two mutually balanced partial $P^{(3)}(1,5)$-designs of type Δ, defined on v vertices, having exactly r blocks in common;
- and $J_\nu(\Delta, x)$ the set of all possible integers r such that there exist two mutually balanced partial $P^{(3)}(1,5)$-designs of type Δ, defined on v vertices, containing in the central position the vertex x and having exactly r blocks in common.

Theorem 4.1 : $\{0, 2, 4, 6, \ldots, 12h - 6, 12h + 2\} \subseteq J_{4h}(\Delta)$.

Proof. Of course, $12h + 2 \in J_{4h}(\Omega)$. Let $x', x'' \in X$. From the Construction $v \rightarrow v + 4$, for $x', x'' \in X - \{1, 2\}$ let

$$\Delta(x', x'') = \Delta(x') \cup \Delta(x'') = \{[A, B, (x'), C, D], [A, C, (x'), B, D], [A, D, (x'), B, C],$$

$$[A, B, (x''), C, D], [A, C, (x''), B, D], [A, D, (x''), B, C]\}.$$

If:

1) $\Delta_0(x', x'') = \{[x', B, (A), x'', C], [x', C, (D), x'', B], [x', C, (A), x'', D], [x', D, (B), x'', C], [x', D, (A), x'', B], [x', B, (C), x'', D]\};$

2) $\Delta_2(x', x'') = \{[x', B, (A), x'', C], [x', C, (D), x'', B], [x', C, (A), x'', D], [x', D, (B), x'', C], [A, C, (x''), B, D], [A, D, (x''), B, C]\};$

3) $\Delta_3(x', x'') = \{[x', B, (A), x'', C], [x', C, (D), x'', B], [A, D, (x'), B, C],$$

$$[A, B, (x''), C, D], [A, C, (x''), B, D], [A, D, (x''), B, C]\};$

then we can verify that:

$$|\Delta(x', x'') \cap \Delta_0(x', x'')| = 0;$$

$$|\Delta(x', x'') \cap \Delta_2(x', x'')| = 2;$$

$$|\Delta(x', x'') \cap \Delta_3(x', x'')| = 4;$$

further $|\Delta(x', x'') \cap \Delta(x', x'')| = 6.$
If we partition $X - \{1, 2\}$ in $2h - 1$ pairs and exchange in $\Delta(1)$ and $\Delta(2)$ the vertices 1 and 2, we can define two mutually balanced partial $P^{(3)}(1, 5)$-designs, one of them of type Δ, having exactly k blocks in common, for every $k = 0, 2, 4, 6, \ldots, 12h - 6$. \qed

5 Main results

In this section we determine $J(v)$ for $P^{(3)}(1, 5)$-designs.

Theorem 5.1 : For $P^{(3)}(1, 5)$-designs of order $v = 4h$, $h \geq 2$, it is $J(v) = I(v) = \{0, 1, 2, \ldots, p_v - 2, p_v\}$.

Proof. In [15] it is proved that $J(8) = I(8) = \{0, 1, 2, \ldots, 26, 28\}$. Let $\Sigma = (X, \mathcal{B})$ be a $P^{(3)}(1, 5)$-design of order $v = 4h$, $h \geq 2$, and let $\Sigma' = (X', \mathcal{B}')$ be a $P^{(3)}(1, 5)$-design of order $v' = 4h + 4$, obtained by a construction $v \rightarrow v + 4$, described in Section 2. Observe that:

1) $\mathcal{B}' = \mathcal{B} \cup \Delta \cup \Omega$;

2) \mathcal{B}, Δ and Ω generate in Σ three partial $P^{(3)}(1, 5)$-designs, without blocks in common, such that:

$$|\mathcal{B}| = p_v = \frac{4h(4h - 1)(4h - 2)}{3}, \quad |\Delta| = p_\Delta = 12h + 2, \quad |\Omega| = p_\Omega = h(4h - 1);$$

3) if \mathcal{C}', \mathcal{C}'' are two mutually balanced partial $P^{(3)}$-designs, defined in the same vertex set contained in X' and $\mathcal{C}' \subseteq \mathcal{B}'$, then $\Sigma'' = (X', \mathcal{C}'')$, where $\mathcal{C}'' = \mathcal{B}' - \mathcal{C}' \cup \mathcal{C}''$, is a $P^{(3)}$-design of order $v'' = 4h + 4$.

Now, use 3) taking \mathcal{C}', \mathcal{C}'' both of type Δ, or both of type Ω, or both of type Δ and Ω together. By the results of Theorems 3.1, 4.1, we can determine $J(v)$.

Therefore, let $\Sigma_1 = (X, \mathcal{B}_1), \Sigma_2 = (X, \mathcal{B}_2)$ be two $P^{(3)}(1, 5)$-designs of order $v = 4h$, $h \geq 2$, and let $\Sigma'_1 = (X', \mathcal{B}'_1), \Sigma'_2 = (X', \mathcal{B}'_2)$ be two $P^{(3)}(1, 5)$-designs of order $v = 4h + 4$ obtained by Construction $v = 4h \rightarrow v + 4$, with $X' = X \cup \{A, B, C, D\}$, $\mathcal{B}'_1 = \mathcal{B}_1 \cup \Delta_1 \cup \Omega_1$ and $\mathcal{B}'_2 = \mathcal{B}_2 \cup \Delta_2 \cup \Omega_2$.

Further, let $|\mathcal{B}_1 \cap \mathcal{B}_2| = r$, $|\Delta_1 \cap \Delta_2| = s$, $|\Omega_1 \cap \Omega_2| = t$.

Fixed $\Sigma'_1 = (X', \mathcal{B}'_1)$, by Theorems 3.1, 4.1, it is possible to define $\Sigma'_2 = (X', \mathcal{B}'_2)$ such that $r \in J(v)$ and $s = t = 0$. This implies that $J(v) \subseteq J(v + 4)$. Further, it possible to define Σ'_2 such that $\mathcal{B}_1 = \mathcal{B}_2$, so $r = \frac{h(4h - 1)(4h - 2)}{3}$, $s = 0, 2, 4, \ldots, 12h - 6$ and $t = 0, 1$. It follows that for every $u = 0, 1, 2, 3, \ldots, 12h - 5$

$$\frac{h(4h - 1)(4h - 2)}{3} + u \in J(v + 4).$$
Similarly, for \(r = h(4h - 1)(4h - 2) \), \(s = 0, 2, 4, ..., 12h - 6 \), \(t = 3, 4, ..., 9 \), it follows: \(J(v) \cup J_{4h}(\Delta) \subseteq J(v + 4) \).

To conclude, we observe that it possible to define \(\Sigma'_2 \) such that \(B_1 = B_2 \), \(\Delta_1 = \Delta_2 \), so \(r = h(4h - 1)(4h - 2)/3, s = 12h + 5 \), and \(t \in J_{4h}(\Omega) \). Thus, the statement is proved.

\[\text{Theorem 5.2:} \quad \text{For } P^{(3)}(1,5)-\text{designs of order } v = 4h + 1, h \geq 2, \text{ it is } J(v) = I(v) = \{0, 1, 2, \ldots, p_v - 2, p_v\}. \]

\[\text{Proof.} \quad \text{In [15] it is proved that } J(8) = I(8) = \{0, 1, 2, 3, ..., 28, 30\}. \text{ Let } \Sigma = (X, B) \text{ be a } P^{(3)}(1,5)-\text{design of order } v = 4h, h \geq 2, \text{ and let } \Sigma' = (X', B') \text{ be a } P^{(3)}(1,5)-\text{design of order } v' = 4h + 1, \text{ obtained by a construction } v \rightarrow v + 1, \text{ described in Section 2. Following the same technique used in Theorem 5.1, we can arrive the a similar conclusion and prove the statement.} \]

\[\text{Theorem 5.3:} \quad \text{For } P^{(3)}(1,5)-\text{designs of order } v = 4h + 2, h \geq 1, \text{ it is } J(v) = I(v) = \{0, 1, 2, \ldots, p_v - 2, p_v\}. \]

\[\text{Proof.} \quad \text{In the Theorem 5.2 it is proved that } J(9) = I(9) = \{0, 1, 2, 3, ..., 40, 42\}. \text{ Let } \Sigma = (X, B) \text{ be a } P^{(3)}(1,5)-\text{design of order } v = 4h + 1, h \geq 2, \text{ and let } \Sigma' = (X', B') \text{ be a } P^{(3)}(1,5)-\text{design of order } v' = 4h + 2, \text{ obtained by a construction } v \rightarrow v + 1, \text{ described in Section 2. Also in this case, following the same technique used in Theorem 5.1, we can prove the statement.} \]

Collecting together Theorems 5.1, 5.2, 5.3, and considering Theorem 1.2 proved in [15], it follows that:

\[\text{Theorem 5.4:} \quad \text{For } P^{(3)}(1,5)-\text{designs of any admissible order } v \text{ it is } J(v) = I(v) = \{0, 1, 2, \ldots, p_v - 2, p_v\}, \text{ for } v \geq 6 \text{ and } J(5) = \{1, 5\} = I(5) - \{0, 2, 3\}. \]

\textbf{Acknowledgements.} The present research has been supported by MIUR-PRIN(2012), INDAM-GNSAGA.

\section*{References}

Intersections among ...

Received: January 15, 2016; Published: April 12, 2016