Existence of Dodecagon Quadrangle Systems

Having Index $\lambda > 1$

Mario Gionfriddo

Department of Mathematics and Comp. Sciences
University of Catania, Catania, Italy

Copyright © 2015 Mario Gionfriddo. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A dodecagon quadrangle is the graph consisting of two cycles: a 12-cycle $(x_1, x_2, ..., x_{12})$ and a 4-cycle (x_1, x_4, x_7, x_{10}). A dodecagon quadrangle system $[DQS]$ of order v and index $\lambda [DQS]$ is a pair $\Sigma = (X, B)$, where X is a finite set of v vertices and B is a collection of edge disjoint dodecagon quadrangles (called blocks) which partitions the edge set of λK_v, the complete multigraph with vertex set X. In [11] the authors determined the spectrum of DQSs having index $\lambda = 1$ and the spectrum of perfect DQSs in all the cases. In this paper we determine the spectrum of DQSs of index $\lambda = 2^n(2h + 1) > 1$, for any $h \in \mathbb{N}$ and $n = 0, 1, 2, 3$.

Mathematics Subject Classification: 05B05

Keywords: Graph Designs; Dodecagon Systems; Spectrum

1 Historical introduction and Definitions

In these last years, G-decompositions of the complete multigraph λK_v have been examined mainly in the case in which G is a polygon with some chords, forming an inside polygon whose sides joining vertices at distance two. Hexagon triple systems and hexagon triple systems have been studied respectively in [20],[21], while in [1] octagon triple systems are considered. Generally, in these papers, the authors determine the spectrum of the corresponding systems and
study problems of embedding.

In [2],[3],[5],[14],[15], the authors introduced and studied octagon quadrangle systems, briefly OQSs, perfect OQSs, and OQSs with various types of nestings. They defined an octagon quadrangle as a graph formed by a cycle $C_8(x_1, x_2, ..., x_8)$ with the two chords $\{x_1, x_4\}, \{x_5, x_8\}$.

Balance in G-designs have been studied in [10],[4],[13],[22]; while block-colourings have been studied in with [8],[9],[12],[16]. In [11] the authors defined dodecagon quadrangles $[DQ\text{-}graph]$, dodecagon quadrangle systems $[DQS]$, perfect dodecagon quadrangle systems $[PDQS]$, determining the spectrum for DQS s having index $\lambda = 1$, and for perfect dodecagon quadrangle systems in all the cases. In these G-designs, G is a polygon of 12 vertices with 4 chords which divide it into five 4-cycles. Indeed, a dodecagon quadrangle is defined as the graph formed by a cycle $C_{12} = (x_1, x_2, ..., x_{12})$ with the four chords $\{x_1, x_4\}, \{x_4, x_7\}, \{x_7, x_{10}\}, \{x_{10}, x_1\}$. Such a graph it is denoted by $[(x_1), x_2, x_3, (x_4), x_5, x_6, (x_7), x_8, x_9, (x_{10}), x_{11}, x_{12}]$ [11]. A dodecagon quadrangle system of order v and index $\lambda [DQS_v]$ is a pair $\Sigma = (X, \mathcal{B})$, where X is a finite set of v vertices and \mathcal{B} is a collection of edge disjoint dodecagon quadrangles (called blocks) which partitions the edge set of λK_v, with vertex set X [11].

In [11] the spectrum of DQS s having index $\lambda = 1$ has been completely determined.

Theorem 1.1 [11]: There exists a DQS of order v and index 1 if and only if: $v \equiv 1 \mod 32, v \geq 33$.

In this paper we determine the spectrum of DQS s of index $\lambda \equiv 2h \mod 4h$, for $h = 1, 2, 4$. This means that we consider the cases: λ odd, $\lambda = 2(2h + 1)$, $\lambda = 4(2h + 1)$, $\lambda = 8(2h + 1)$, for each $h \in N$. In what follows, we say that a block B of a DQS $\Sigma = (X, \mathcal{B})$ has multiplicity r if in \mathcal{B} there are exactly r blocks $B_1, B_2, ..., B_r$, such that $B = B_1 = B_2 = ... = B_r$. In these cases, we will indicate such a situation by $B(r)$.

2 Necessary existence conditions and existence of DQS s

In this section we prove some necessary existence conditions for DQS s.

Theorem 2.1 : Let $\Sigma = (X, \mathcal{B})$ a DQS of order v and index λ.

(1) If λ is odd, then $v \equiv 1 \mod 32, v \geq 33$.

(2) If λ is even, then for $\lambda = 2^i(2h + 1)$, $i > 0, h \geq 0$, i, h integers:
(2.1) if $i = 1, 2, 3$, then $v \equiv 1 \mod 2^{5-i}$ and $v \geq 17$ for $i = 1, 2$, $v \geq 13$ for $i = 3$;
(2.2) if $i \geq 4$, then $v \equiv 1 \mod 2$, $v \geq 13$.

Proof. Let $\Sigma = (X, \mathcal{B})$ be a DQS of order v and index λ. Observe that, since all the vertices of a dodecagon quadrangle have degree even, then v must be odd. Further, considering that:

$$b = |\mathcal{B}| = \frac{\lambda v(v - 1)}{32},$$

it follows that:

(1) If λ is odd, necessarily: $v \equiv 1 \mod 32$, $v \geq 33$;
(2) If λ is even, there exist two integer numbers $i > 0$ and $h \geq 0$ such that $\lambda = 2^i(2h + 1)$. Therefore, if $i = 1, 2, 3$, then $v - 1$ must be a multiple if 2^{5-i} and (2.1) holds. If $i \geq 4$, necessarily $v - 1$ is even and $v \geq 13$. \Box

3 The case λ odd

For λ odd, the solution follows easily from Theorem 1.1 [11].

Theorem 3.1: There exists a DQS of order v and index λ odd if and only if $v \equiv 1 \mod 32$, $v \geq 33$.

Proof. The necessary existence conditions follow from Theorem 2.1. Therefore, we prove that for every $v \equiv 1 \mod 32$, $v \geq 33$, there exists a DQS of order v and index λ. Let $\Sigma = (X, \mathcal{B})$ be a DQS of order v and index 1. Further, let \mathcal{B}' be the family of dodecagon quadrangles obtained from \mathcal{B}, giving to every block of \mathcal{B} multiplicity λ. This means that every block of \mathcal{B} is repeated λ times in \mathcal{B}'. Easily, the system $\Sigma' = (X, \mathcal{B}')$ is a DQS of order v and index λ odd. \Box

4 The case $\lambda \equiv 2, \mod 4$

At first we determine completely the spectrum of DQSs of index $\lambda = 2$. Then, we extend this result to the case $\lambda = 2(2h + 1)$, for any integer $h > 0$.

Theorem 4.1: There exists a DQS of order v and index $\lambda = 2$ if and only if $v \equiv 1 \mod 16$, $v \geq 17$.
Proof. The necessity follows from Theorem 2.1.
If \(v = 17 \) and \(B \) is the following base block defined in \(Z_{17} \):

\[
B = [(0), 4, 8, (5), 13, 12, (10), 16, 9, (2), 3, 6],
\]
then we can verify that \(\Sigma = (Z_{17}, B) \), where \(B \) is the collection of all the translates of \(B \), is a DQS of order \(v = 17 \) and index \(\lambda = 2 \).

Let \(v \) be a positive integer such that \(v \equiv 1 \mod 16 \), \(v > 17 \).
Now, let \((x, i) = x_i \), \(Z_{8,i} = Z_8 \times \{i\} \), \(i = 1, 2, ..., 2k \), \(Z_{8,j} = Z_8 \times \{j\} \), \(j = A, B \), \(\infty \notin Z_{8,i} \cup Z_{8,j} \), for every \(i, j \).

Let \(\Sigma_1 = (X_1, B_1) \) be a DQS of order \(v' = 16k + 1 \), \(v' \geq 17 \), and index \(\lambda' = 2 \), and let \(\Sigma_2 = (X_2, B_2) \) be a DQS of order \(v'' = 17 \) and index \(\lambda'' = 2 \), where:

\[
X_1 = \bigcup_{i=1}^{2k} Z_{8,i} \cup \{\infty\}, \text{ and}
X_2 = Z_{8,A} \cup Z_{8,B} \cup \{\infty\}.
\]

For every \(i = 1, 2, ..., 2k \) and for every \(j = A, B \), consider, at first, the following dodecagon quadrangles all defined in \(Z_{8,i} \cup Z_{8,j} \):

\[
F_{i,j,1} = [(1)_i, 5_j, 5_i, (1)_j, 6_i, 7_j, (2)_i, 0_j, 0_i, (2)_j, 7_i, 6_j],
\]
\[
F_{i,j,2} = [(1)_i, 7_j, 5_i, (3)_j, 6_i, 5_j, (2)_i, 6_j, 0_i, (4)_j, 7_i, 0_j],
\]
\[
F_{i,j,3} = [(3)_i, 6_j, 6_i, (2)_j, 5_i, 0_j, (4)_i, 7_j, 7_i, (1)_j, 0_i, 5_j],
\]
\[
F_{i,j,4} = [(3)_i, 0_j, 6_i, (4)_j, 5_i, 6_j, (4)_i, 5_j, 7_i, (3)_j, 0_i, 7_j].
\]

Then, indicate by \(\mathcal{F} \) the family of all the blocks \((F_{i,j,1})_{(2)}, (F_{i,j,2})_{(2)}, (F_{i,j,3})_{(2)}, (F_{i,j,4})_{(2)} \), where every block \(F_{i,j,u} \), for \(u = 1, 2, 3, 4 \), is considered 2-times.

If \(X = X_1 \cup X_2 \) and \(\mathcal{D} = B_1 \cup B_2 \cup \mathcal{F} \), then we can verify that \(\Sigma = (X, \mathcal{D}) \) is a DQS of order \(v = v' + v'' - 1 = 16k + 17 \) and index \(\lambda = 2 \).
Indeed, we can see that:

1) all the pairs \(x, y \) belonging to \(X_1 \) are contained, as edge, two times in the blocks of \(B_1 \);
2) all the pairs \(x, y \) belonging to \(X_2 \) are contained, as edge, two times in the blocks of \(B_2 \);
3) all the pairs \(x, y\), such that \(x \in X_1 - \{\infty\}\) and \(y \in X_2 - \{\infty\}\), are contained, as edge, two times in the blocks of \(\mathcal{F}\).

Therefore, the case \(\lambda = 2\) is completely solved.

Theorem 4.2: There exists a DQS of order \(v\) and index \(\lambda = 2(2h + 1)\), for any integer \(h > 0\), if and only if \(v \equiv 1 \mod 16\), \(v \geq 17\).

Proof. The statement follows easily from Theorem 2.1, by repetition of blocks. For every DQS or order \(v\) and index \(\lambda = 2\), it is possible to define a DQS of order \(v\) and index \(\lambda' = 2(2h + 1)\), for any integer \(h > 0\), repeating every block \(2h + 1\) times. \(\square\)

5 The case \(\lambda \equiv 4, \mod 8\)

Also in this section, at first we determine completely the spectrum of DQSs of index \(\lambda = 4\), then we extend the result to the case \(\lambda = 2(2h + 1)\), for any integer \(h > 0\).

Theorem 5.1: There exists a DQS of order \(v\) and index \(\lambda = 4\) if and only if \(v \equiv 1 \mod 8\), \(v \geq 13\).

Proof. The necessity follows from Theorem 2.1. Therefore, consider a positive integer \(v\) such that \(v \equiv 1 \mod 8\), \(v \geq 17\). The existence for \(v = 17\) follows from Theorem 3.1, by a repetition of blocks, giving to each of them multiplicity 2.

Therefore, let \(v = 25\) and let \(B_1, B_2, B_3\) be the following base blocks defined in \(\mathbb{Z}_{25}\):

\[
B_1 = [(0), 22, 7, (1), 24, 14, (13), 17, 8, (2), 10, 9],
\]

\[
B_2 = [(0), 11, 16, (5), 17, 19, (13), 23, 22, (6), 9, 20],
\]

\[
B_3 = [(0), 12, 20, (3), 10, 17, (13), 1, 8, (4), 7, 2].
\]

Similarly to the previous Theorem, let \(\Sigma_1 = (X_1, B_1)\) be a DQS of order \(v' = 16k + 1\) or \(v' = 16k + 9, v' \geq 17\), and index \(\lambda' = 4\), and let \(\Sigma_2 = (X_2, B_2)\) be a DQS of order \(v'' = 17\) and index \(\lambda'' = 4\). By the same construction of Theorem 3.1, we can define the blocks \(F_{i,j,1}, F_{i,j,2}, F_{i,j,3}, F_{i,j,4}\) and the family \(\mathcal{F}\) containing all the blocks \(F_{i,j,1}^{(4)}, F_{i,j,2}^{(4)}, F_{i,j,3}^{(4)}, F_{i,j,4}^{(4)}\) having multiplicity 4.

If \(X = X_1 \cup X_2\) and \(\mathcal{D} = B_1 \cup B_2 \cup \mathcal{F}\), then we can verify that \(\Sigma = (X, \mathcal{D})\) is a DQS of order \(v = 16k + 17\) or \(v = 16k + 25\), and index \(\lambda = 4\). \(\square\)
Theorem 5.2: There exists a DQS of order \(v \) and index \(\lambda = 4(2h+1) \), for any integer \(h > 0 \), if and only if \(v \equiv 1 \mod 8 \), \(v \geq 17 \).

Proof. The statement follows from Theorem 3.1, by repetition of blocks. For every DQS of order \(v \) and index \(\lambda = 4 \), it is possible to define a DQS of order \(v \) and index \(\lambda' = 4(2h+1) \), for any integer \(h > 0 \), repeating every block \(2h+1 \) times. \(\square \)

6 The case \(\lambda \equiv 8 \mod 16 \)

In this section we determine completely the spectrum of DQSs having index \(\lambda = 8(2h+1) \), \(h \in \mathbb{N} \).

Theorem 6.1: There exists a DQS of order \(v \) and index \(\lambda = 8 \) if and only if \(v \equiv 1 \mod 4 \), \(v \geq 13 \).

Proof. The necessity follows from Theorem 2.1. Therefore, consider a positive integer \(v \) such that \(v \equiv 1 \mod 4 \), \(v \geq 13 \).

The existence for \(v = 17 \) follows from Theorem 3.1, by a repetition of blocks, giving to each of them multiplicity 4.

1) Let \(v = 13 \). Define in \(X = \mathbb{Z}_{13} \) the following base-blocks:

\[
B_1 = [(0), 1, 2, (3), 5, 7, (9), 8, 11, (4), 12, 6], \\
B_2 = [(0), 6, 10, (5), 8, 11, (1), 12, 9, (7), 3, 2], \\
B_3 = [(0), 8, 12, (2), 7, 11, (3), 5, 6, (10), 9, 4].
\]

If \(B \) is the collection of all the translates of \(B_1, B_2, B_3 \), then \(\Sigma = (X, B) \) is a DQS of order \(v = 13 \) and index \(\lambda = 8 \).

2) Let \(v = 21 \). Define in \(X = \mathbb{Z}_{21} \) the following base-blocks:

\[
B_1 = [(0), 3, 12, (1), 7, 15, (11), 6, 4, (2), 13, 9], \\
B_2 = [(0), 8, 12, (3), 2, 9, (11), 19, 15(4), 16, 5], \\
B_3 = [(0), 15, 19, (5), 9, 10, (11), 8, 3, (6), 13, 12], \\
B_4 = [(0), 5, 12, (7), 9, 10, (11), 20, 14, (8), 13, 2], \\
B_5 = [(0), 6, 12, (9), 17, 19, (11), 4, 18, (10), 13, 3].
\]

If \(B \) is the collection of all the translates of \(B_1, B_2, B_3, B_4, B_5 \), then \(\Sigma = (X, B) \) is a DQS of order \(v = 21 \) and index \(\lambda = 8 \).
3) Construction $v \rightarrow v + 12$.

Similarly to the previous Theorem, let $\Sigma_1 = (X_1, B_1)$ be a $DQS(v')$ of order $v' = 16k + 1$ or $v' = 16k + 9$, $v' \geq 17$, and index $\lambda' = 4$, and let $\Sigma_2 = (X_2, B_2)$ be a $DQS(v'')$ of order $v'' = 17$ and index $\lambda'' = 4$. By the same construction of Theorem 3.1, we can define the blocks $F_{i,j,1}', F_{i,j,2}', F_{i,j,3}', F_{i,j,4}'$ and the family \mathcal{F} containing all the blocks $F_{i,j,1}'', F_{i,j,2}'', F_{i,j,3}'', F_{i,j,4}''$ having multiplicity 4.

If $X = X_1 \cup X_2$ and $\mathcal{D} = B_1 \cup B_2 \cup \mathcal{F}$, then we can verify that $\Sigma = (X, \mathcal{D})$ is a DQS of order $v = 16k + 17$ or $v = 16k + 25$, and index $\lambda = 4$. □

Theorem 6.2 : There exists a DQS of order v and index $\lambda = 8(2h + 1)$, for any integer $h > 0$, if and only if $v \equiv 1 \mod 4$, $v \geq 13$.

Proof. Similarly to the other cases, the statement follows from Theorem 3.1, by repetition of blocks. For every DQS or order v and index $\lambda = 8$, it is possible to define a DQS of order v and index $\lambda' = 8(2h + 1)$, for any integer $h > 0$, repeating every block $2h + 1$ times. □

Acknowledgements. The present research has been supported by MIUR (PRIN 2012), GNSAGA (INDAM).

References

Received: October 25, 2015; Published: April 12, 2016