Tree Cover of the Join and the Corona of Graphs

Rosalio G. Artes, Jr., and Rene D. Dignos

Department of Mathematics and Statistics
College of Science and Mathematics, MSU - Iligan Institute of Technology
Andres Bonifacio Avenue, Tibanga, 9200 Iligan City, Philippines

Copyright © 2014 Rosalio G. Artes, Jr., and Rene D. Dignos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let G be a graph and $T_G = \{G_1, G_2, G_3, \ldots, G_k\}$ be a collection of subgraphs of G where G_i is a subtree of G for every $i \in \{1, 2, \ldots, k\}$. If for every edge $e \in E(G)$, there exists $G_i \in T_G$ such that $e \in E(G_i)$, then T_G is a tree cover of G. The tree covering number of G is the minimum cardinality among the tree covers of G. In this paper, we establish some bounds for the tree covering numbers of the join and the corona of two vertex-disjoint graphs.

Mathematics Subject Classification: 05C05, 05C30

Keywords: tree cover, tree covering number, join, corona

1 Introduction

Let G be a simple graph. A subtree of G is a connected acyclic subgraph of G. A collection $T_G = \{G_1, G_2, G_3, \ldots, G_k\}$ of subgraphs of G is a tree cover of G if G_i is a subtree of G for every $i \in \{1, 2, \ldots, k\}$ and for every edge $e \in E(G)$, there exists $G_i \in T_G$ such that $e \in E(G_i)$. The tree covering number of G, denoted by $t_c(G)$, is given by $t_c(G) = \min\{|T_G|: T_G \text{ is a tree cover of } G\}$.

The graph G in Figure 1.1 has tree covering number equal to 2.
Indeed, let $\mathcal{F}_G = \{G_1, G_2\}$, where G_1 and G_2 are subgraphs of G shown in Figure 1.2 and Figure 1.3, respectively.

Figure 1.1: A graph G with $t_c(G) = 2$.

Figure 1.2: The graph G_1.

Figure 1.3: The graph G_2.
Clearly, G_1 and G_2 are subtrees of G. Moreover, $G_1 \cup G_2 = G$. Hence, every edge of G is either in G_1 or in G_2. Consequently, \mathcal{S}_G is a tree cover of G. Thus, by definition, $t_e(G) \leq |\mathcal{S}_G| = 2$. Since G is not a tree, Theorem 2.2 found in [1] asserts that $t_e(G) \geq 2$. Combining the two inequalities gives $t_e(G) = 2$.

The next section establishes an upper bound for the tree covering number of the join of two vertex-disjoint graphs.

2 Tree Covering Number of the Join of Graphs

Here, we formally define the join of two vertex-disjoint graphs.

Definition 2.1 [4] Let G and H be vertex-disjoint graphs. The join $G \oplus H$ of G and H has vertex-set $V(G \oplus H) = V(G) \cup V(H)$ and edge-set

$$E(G \oplus H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$$

Consequently,

$$|V(G \oplus H)| = |V(G)| + |V(H)|,$$

and

$$|E(G \oplus H)| = |E(G)| + |E(H)| + |V(G)||V(H)|.$$

Note also that the operation \oplus is commutative, i.e., $G \oplus H$ is isomorphic to $H \oplus G$ with respect to adjacency.

Let us consider an illustration of the above definition.

Example 2.2 Consider the path P_3 and the complete graph K_1 with vertex-set $V(K_1) = \{u\}$. Then the join of P_3 and K_1 is shown below.

![Figure 2.1: The join $P_3 + K_1$.](image)

In the above illustration, every vertex of P_3 is joined with the vertex u.

An upper bound for the tree covering number of the join of two vertex-disjoint graphs is established in the following theorem.
Theorem 2.3 Let G and H be two vertex-disjoint graphs of orders m and n, respectively. Then,

$$t_c(G \oplus H) \leq \min \{m + t_c(H), n + t_c(G)\}.$$

Proof: Let $V(G) = \{v_1, v_2, v_3, \ldots, v_m\}$ and $V(H) = \{u_1, u_2, u_3, \ldots, u_n\}$. Then $v_i u_j \in E(G \oplus H)$ for all $i = 1, 2, 3, \ldots, m$ and for all $j = 1, 2, 3, \ldots, n$. Let \mathcal{T}_G and \mathcal{T}_H be tree covers of G and H, respectively, such that $|\mathcal{T}_G| = t_c(G)$ and $|\mathcal{T}_H| = t_c(H)$. Now, for every vertex $v \in V(G)$, $\{v\} \oplus H \cup \overline{H}$ is a star, and hence a tree. Moreover, there exists $G_v \in \mathcal{T}_G$ with $v \in V(G)$ and $G_v \cup \{v\} \oplus H \cup \overline{H}$ is a tree. Let

$$\mathcal{T}_{G+H} = \mathcal{T}_H \cup \{G_v \cup \{v\} \oplus H \cup \overline{H} : v \in V(G)\}.$$

Then $\mathcal{T}_{G\oplus H}$ is a tree cover of $G \oplus H$. Thus,

$$t_c(G \oplus H) \leq |\mathcal{T}_H| + |\{G_v \cup \{v\} \oplus H \cup \overline{H} : v \in V(G)\}|.$$

But $|\mathcal{T}_H| = t_c(H)$ and $|\{G_v \cup \{v\} \oplus H \cup \overline{H} : v \in V(G)\}| = |V(G)| = m$. Thus,

$$t_c(G \oplus H) \leq m + t_c(H). \quad (1)$$

Similarly,

$$t_c(G \oplus H) \leq n + t_c(G). \quad (2)$$

Combining Inequalities (1) and (2) gives the desired result. \(\square\)

Consider now the complete bipartite graph $K_{m,n}$. An upper bound for its tree covering number is established in the following theorem.

Theorem 2.4 Let m and n be positive integers. Then, $t_c(K_{m,n}) \leq \min \{m, n\}$.

Proof: Note that $K_{m,n} = \overline{K_m} \oplus \overline{K_n}$. Thus by Theorem 2.3,

$$t_c(K_{m,n}) = t_c(\overline{K_m} \oplus \overline{K_n}) \leq \min \{m + t_c(\overline{K_n}), n + t_c(\overline{K_m})\}$$

$$= \min \{m + 0, n + 0\}$$

$$= \min \{m, n\}.$$

Thus, $t_c(K_{m,n}) \leq \min \{m, n\}$. \(\square\)

The tree covering number of the corona of graphs is established in the following section.
3 Tree Covering Number of the Corona of Graphs

Formally, we define the corona of two vertex-disjoint graphs.

Definition 3.1 [4] The corona $G \circ H$ of two graphs G and H is the graph obtained by taking one copy of G of order n and n copies of H, and then joining the i^{th} vertex of G to every vertex in the i^{th} copy of H.

Example 3.2 The figure below illustrates the corona $P_3 \circ C_3$.

![Figure 3.1: The corona $P_3 \circ C_3$.](image)

Note that if H is a tree, then $G \circ H$ has tree covering number equal to the tree covering number of G. We formally write this result in the following theorem.

Theorem 3.3 Let G be a connected graph. Then for any tree T, $t_c(G \circ T) = t_c(G)$.

Next, we give an upper bound for the tree covering number of the corona of two graphs as a linear combination of the tree covering number of G and the tree covering number of H.

Theorem 3.4 Let G and H be two nontrivial connected graphs of orders m and n, respectively. Then $t_c(G \circ H) \leq t_c(G) + mt_c(H)$.

Proof: Let \mathcal{F}_G and \mathcal{F}_H be tree covers of G and H, respectively, such that $|\mathcal{F}_G| = t_c(G)$ and $|\mathcal{F}_H| = t_c(H)$. For every $u \in V(G)$, each copy H_u of H can be covered by $|\mathcal{F}_H|$ subtrees. Hence, all the copies of H in $G \circ H$ can be covered by $mt_c(H)$ subtrees. Now, for every vertex $v \in V(G)$, there exists $G_v \in \mathcal{F}_G$ with $v \in G_v$ and $G_v \cup \{v\} \oplus H \cup \overline{H}$ is a tree. Thus, the family $\mathcal{F}_{G\circ H} = \bigcup\{\mathcal{F}_{H_u} : u \in V(G)\} \cup \{G_v \cup \{v\} \oplus H \cup \overline{H}\}$ is a tree cover of $G \circ H$. Accordingly,

$$t_c(G \circ H) \leq \left| \bigcup\{\mathcal{F}_{H_u} : u \in V(G)\} \cup \{G_v \cup \{v\} \oplus H \cup \overline{H}\} \right|$$

$$= m|\mathcal{F}_H| + |\mathcal{F}_G|$$

$$= mt_c(H) + t_c(G).$$

This completes the proof. \square
References

Received: November 5, 2014; Published: January 12, 2015