Independent Non-split Domination
in the Join and Corona of Graphs

Rene E. Leonida

Mathematics Department
College of Natural Sciences and Mathematics
Mindanao State University
General Santos City, Philippines

Abstract

In this paper, we explore the concept of independent non-split domination in graphs. In particular, we characterized the independent non-split dominating sets of the join and corona of graphs and obtain their independent non-split domination numbers. Also, a connected graph with a given order, independent domination number, and independent non-split domination number is constructed.

Mathematics Subject Classification: 05C69

Keywords: domination, independent domination, non-split domination, independent non-split domination, join, corona

1 Introduction and Preliminary Results

Let \(G = (V(G), E(G)) \) be a connected undirected graph. For any vertex \(v \in V(G) \), the open neighborhood of \(v \) is the set \(N(v) = \{ u \in V(G) : uv \in E(G) \} \) and the closed neighborhood of \(v \) is the set \(N[v] = N(v) \cup \{ v \} \). For a set \(X \subseteq V(G) \), the open neighborhood of \(X \) is \(N(X) = \bigcup_{v \in X} N(v) \) and the closed neighborhood of \(X \) is \(N[X] = \bigcup_{v \in X} N[v] \).

The subgraph \(\langle C \rangle \) of \(G \) induced by \(C \) is the graph having vertex-set \(C \) and whose edge set consists of those edges of \(G \) incident with two elements of \(C \). A
graph is called connected if every two vertices are joined by a path; otherwise, it is disconnected.

A set $S \subseteq V(G)$ is a dominating set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that $uv \in E(G)$. The domination number of G, denoted by $\gamma(G)$, is the smallest cardinality of a dominating set of G. A dominating set $S \subseteq V(G)$ is called an independent dominating set of G if for all $u, v \in S$, $uv \not\in E(G)$. The independent domination number of G, denoted by $i(G)$, is the smallest cardinality of an independent dominating set of G.

A dominating set $S \subseteq V(G)$ is a non-split dominating set of G if $\langle V(G) \setminus S \rangle$ is connected. The non-split domination number of G, denoted by $\gamma_{ns}(G)$, is the smallest cardinality of a non-split dominating set of G. An independent dominating set $S \subseteq V(G)$ is an independent non-split dominating set of G if $\langle V(G) \setminus S \rangle$ is connected. The independent non-split domination number of G, denoted by $i_{ns}(G)$, is the smallest cardinality of an independent non-split dominating set of G.

The concept of non-split domination was introduced by V.R. Kulli and B. Janakiram [2]. They obtained bounds on $\gamma_{ns}(G)$ and investigated relationship with other parameters. In [1], the inverse non-split domination in graphs was introduced and discussed; and in [3], the non-split dominating sets in the join and corona are characterized and the non-split and inverse non-split domination numbers of these graphs were determined. In this paper, the concept of independent non-split domination in graphs is revisited. In particular, the independent non-split dominating sets in the join and corona are characterized and their independent non-split domination numbers are obtained.

The join of two graphs G and H, denoted by $G + H$, is the graph with vertex-set $V(G + H) = V(G) \cup V(H)$ and edge-set $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$.

Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G and m copies of H, and then joining the ith vertex of G to every vertex of the ith copy of H.

Remark 1.1 Let G be a graph and let S be an independent non-split dominating set of G.

(i) If v is a cut-vertex of G, then $v \not\in S$.

(ii) If v is a leaf of G, then $v \in S$.

Remark 1.2 Let G be a graph. If $i_{ns}(G)$ exists, then $i(G) \leq i_{ns}(G)$.

Theorem 1.3 Given positive integers a, b, n with $3 \leq a \leq b$ and $n \geq a + b$, there exists a connected graph G such that $i(G) = a$, $i_{ns}(G) = b$, and $|V(G)| = n$.
Proof: Consider the path $P_a = [u_1, u_2, \ldots, u_a]$. Let G be a graph obtained from P_a by adding the edges $u_i x_i$ for $i = 1, 2, \ldots, a$; adding the edges $u_a v_j$ for $j = 0, 1, \ldots, b-a$; and adding the vertices w_k for $k = 0, 1, \ldots, n-a-b$ and forming the complete graph K_r, where $V(K_r) = \{u_1, x_1, w_1, \ldots, w_{n-a-b}\}$ (see Figure 1). Then $S_1 = \{x_1, x_2, \ldots, x_{a-1}, u_a\}$ is a minimum independent dominating set of G and $S_2 = \{x_1, x_2, \ldots, x_a\} \cup \{v_1, v_2, \ldots, v_{b-a}\}$ is a minimum independent non-split dominating set of G. Thus, $i(G) = |S_1| = a$, $i_{ns}(G) = |S_2| = b$, and $|V(G)| = n$. \square

2 Main Results

Theorem 2.1 Let G be a graph. Then $i_{ns}(G) = 1$ if and only if $G = K_1 + H$, where H is a connected graph.

Proof: Suppose $i_{ns}(G) = 1$. Let $S = \{x\}$ be an independent non-split dominating set of G. Then $\langle V(G) \setminus S \rangle$ is connected. Set $K_1 = \langle \{x\} \rangle$ and $H = \langle V(G) \setminus S \rangle$. Then $G = K_1 + H$.

The converse is clear. \square

Corollary 2.2 $i_{ns}(K_1 + G) = 1$ if and only if G is a connected graph.

Theorem 2.3 $i_{ns}(K_1 + G) = 2$ if and only if G is not connected and $i(G) = 2$.

Proof: Suppose $i_{ns}(K_1 + G) = 2$. Let $K_1 = \langle \{v\} \rangle$ and $S = \{u, w\}$ be an independent non-split dominating set of $K_1 + G$. Since G is not connected, v is a cut-vertex of $K_1 + G$. By Remark 1.1(i), $v \notin S$ and so, $S \subseteq V(G)$. Thus, S is an independent dominating set of G. Hence, $i(G) \leq |S| = 2$. Since G is not connected, $i(G) \neq 1$. Therefore, $i(G) = 2$.

Conversely, suppose $i(G) = 2$. Let $S = \{x, y\}$ be an independent dominating set of G. Then S is an independent dominating set of $K_1 + G$. If $K_1 = \langle \{v\} \rangle$, then $vz \in E(K_1 + G)$ for all $z \in V(G) \setminus S$. This implies that $\langle V(K_1 + G) \setminus S \rangle$ is connected. Hence, S is an independent non-split dominating set of $K_1 + G$. Thus, $i_{ns}(K_1 + G) \leq |S| = 2$. Since G is not connected, $i_{ns}(K_1 + G) \neq 1$ by
Corollary 2.2. Therefore, \(i_{ns}(K_1 + G) = 2 \). □

The next result characterizes the independent non-split dominating sets of \(K_1 + G \).

Theorem 2.4 Let \(K_1 = \langle \{v\} \rangle \) and \(G \) a nonconnected graph. Then \(S \subseteq V(K_1 + G) \) is an independent non-split dominating set of \(K_1 + G \) if and only if \(S \) is an independent dominating set of \(G \).

Proof: Suppose \(S \) is an independent non-split dominating set of \(K_1 + G \). Since \(G \) is not connected, \(v \) is a cut-vertex of \(K_1 + G \). By Remark 1.1(i), \(v \notin S \). Thus, \(S \subseteq V(G) \) and hence, \(S \) is an independent dominating set of \(G \).

Conversely, suppose \(S \) is an independent dominating set of \(G \). Then \(S \subseteq V(K_1 + G) \). Thus, \(S \) is an independent non-split dominating set of \(K_1 + G \). Hence, \(i(G) = |S'| \geq i_{ns}(K_1 + G) \). Therefore, \(i_{ns}(K_1 + G) = i(G) \). □

Corollary 2.5 Let \(K_1 = \langle \{v\} \rangle \) and \(G \) a nonconnected graph. Then \(i_{ns}(K_1 + G) = i(G) \).

Proof: Suppose \(S \) is a minimum independent non-split dominating set of \(K_1 + G \). By Theorem 2.4, \(S \) is an independent dominating set of \(G \). Thus, \(i(G) \leq |S| = i_{ns}(K_1 + G) \). On the other hand, suppose \(S' \) is a minimum independent dominating set of \(G \). By Theorem 2.4, \(S' \) is an independent non-split dominating set of \(K_1 + G \). Hence, \(i(G) = |S'| \geq i_{ns}(K_1 + G) \). Therefore, \(i_{ns}(K_1 + G) = i(G) \). □

Theorem 2.6 Let \(G \) and \(H \) be graphs, both not isomorphic to \(K_n \). Then \(S \subseteq V(G + H) \) is an independent non-split dominating set of \(G + H \) if and only if either \(S \) is an independent dominating set of \(G \) or \(S \) is an independent dominating set of \(H \).

Proof: Suppose \(S \) is an independent non-split dominating set of \(G + H \). Then either \(S \subseteq V(G) \) or \(S \subseteq V(H) \). Thus, either \(S \) is an independent dominating set of \(G \) or \(S \) is an independent dominating set of \(H \).

For the converse, suppose \(S \) is an independent dominating set of \(G \). Then \(V(G) \setminus S \neq \emptyset \). Let \(x \in V(G) \setminus S \). Then \(xy \in E(G + H) \) for all \(y \in V(H) \). This implies that \(\langle V(G + H) \setminus S \rangle \) is connected. Hence, \(S \) is an independent non-split dominating set of \(G + H \). Similarly, if \(S \) is an independent dominating set of \(H \), then \(S \) is an independent non-split dominating set of \(G + H \). □

Corollary 2.7 Let \(G \) and \(H \) be graphs, both not isomorphic to \(K_n \). Then

\[
i_{ns}(G + H) = \min\{i(G), i(H)\}.
\]
Independent non-split domination in the join and corona of graphs

3049

Proof: Suppose that \(i(G) \leq i(H)\). Let \(S\) be a minimum independent dominating set of \(G\). By Theorem 2.6, \(S\) is an independent non-split dominating set of \(G + H\). Thus, \(i(G) = |S| \geq i_{ns}(G + H)\). On the other hand, let \(S'\) be a minimum independent non-split dominating set of \(G + H\). By Theorem 2.6, \(S'\) is an independent dominating set of \(G\). Hence, \(i(G) \leq |S'| = i_{ns}(G + H)\). Therefore, \(i_{ns}(G + H) = i(G)\). Consequently, \(i_{ns}(G + H) = \min\{i(G), i(H)\}\).

Corollary 2.8 Let \(G\) be a connected graph and \(n\) a positive integer integer greater than or equal to 2. Then \(i_{ns}(G + K_n) = \min\{i(G), n\}\).

The next result characterizes the independent non-split dominating set of \(G \circ H\).

Theorem 2.9 Let \(G\) be a connected graph and let \(H\) be any graph. Then \(C \subseteq V(G \circ H)\) is an independent non-split dominating set of \(G \circ H\) if and only if \(C = \bigcup_{v \in V(G)} S^v\), where \(S^v\) is an independent dominating set of \(H^v\) for all \(v \in V(G)\).

Proof: Suppose \(C \subseteq V(G \circ H)\) is an independent non-split dominating set of \(G \circ H\). Let \(v \in V(G)\). Suppose \(v \notin C\). Then \(v \notin V(G \circ H)\). Since \(v\) is a cut-vertex of \(G \circ H\), it follows \(C = V(G \circ H)\). This contradicts the assumption that \(C\) is an independent non-split dominating set of \(G \circ H\). Hence, \(v \notin C\) for all \(v \in V(G)\). Thus, \(C \cap V(H^v) \neq \emptyset\) and \(C \cap V(H^v)\) is a dominating set of \(H^v\) for all \(v \in V(G)\). Set \(S^v = C \cap V(H^v)\) for all \(v \in V(G)\). Then \(C = \bigcup_{v \in V(G)} S^v\).

Conversely, suppose \(C = \bigcup_{v \in V(G)} S^v\), where \(S^v\) is an independent dominating set of \(H^v\) for all \(v \in V(G)\). Clearly \(C\) is an independent dominating set of \(G \circ H\). Let \(x, y \in V(G \circ H)\). If \(xy \notin E(G \circ H)\), then we are done. Suppose \(xy \notin E(G \circ H)\). Consider the following cases:

Case 1. \(x, y \in V(G)\).

Since \(G\) is connected, there exists an \(x - y\) path in \(V(G \circ H)\). Thus, there exists an \(x - y\) path in \(V(G \circ H)\). By Case 1, there exists an \(x - y\) path in \(V(G \circ H)\).

Case 2. \(x \in V(G)\) and \(y \in V(H^v)\) for some \(v \in V(G)\).

Then \(vy \in E(G \circ H)\). By Case 1, there is a \(u - v\) path in \(V(G \circ H)\). Hence, there is an \(x - y\) path in \(V(G \circ H)\).

Case 3. \(x \in V(H^v)\) and \(y \in V(H^v)\) for some \(u, v \in V(G)\).

Then \(xu, vy \in E(G \circ H)\). By Case 1, there is a \(u - v\) path in \(V(G \circ H)\). Therefore, \(V(G \circ H)\) is connected. Accordingly, \(C\) is is an independent non-split dominating set of \(G \circ H\).
Corollary 2.10 Let G be a connected graph and let H be any graph. Then $i_{ns}(G \circ H) = i(H)|V(G)|$.

Proof: Suppose C is a minimum independent non-split dominating set of $G \circ H$. By Theorem 2.9, $C = \bigcup_{v \in V(G)} S^v$, where S^v is an independent dominating set of H^v for all $v \in V(G)$. Thus, $i_{ns}(G \circ H) = |C| = |S^v||V(G)| \geq i(H)|V(G)|$. On the other hand, let D be a minimum independent dominating set of H. For each $v \in V(G)$, let $S^v \subseteq V(H^v)$ such that $\langle S^v \rangle \cong \langle D \rangle$. Then $C = \bigcup_{v \in V(G)} S^v$ is an independent non-split dominating set of $G \circ H$ by Theorem 2.9. Hence, $i_{ns}(G \circ H) \leq |C| = |S^v||V(G)| = i(H)|V(G)|$. Therefore, $i_{ns}(G \circ H) = i(H)|V(G)|$. \square

Corollary 2.11 Let G be a connected graph of order m. Then

(i) $i_{ns}(G \circ K_n) = m$.

(ii) $i_{ns}(G \circ \overline{K_n}) = mn$.

References

Received: March 2, 2015; Published: April 14, 2015