Synergetic Effects in Multiserver Queuing Systems with Alternating Input Flow

G. Sh. Tsitsiashvili and M. A. Osipova

Institute of Applied Mathematics Far Eastern Branch of the RAS, 690041 Vladivostok, Radio street 7, Russia

&

Far Eastern Federal University, 690950, Vladivostok, Sukhanov street 8, Russia

Copyright © 2015 G. Sh. Tsitsiashvili and M. A. Osipova. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper an aggregation of oneserver queueing systems with ON-OFF input flows into multiserver queueing system is considered. A synergetic effect of a queue disappearance in the aggregated system is analyzed using a convergence of an aggregated input flow to partial Brownian motion widely used in modern queueing theory applications.

Mathematics Subject Classification: 60K25, 90B22

Keywords: a multiserver queueing system, a synergetic effect, a partial Brownian motion, an ON-OFF input flow

1 Multiserver queuing system with input flow defined by partial Brownian motion

Consider a scheme of series in which characteristics of a multiserver queuing system are defined by the parameter \(T \to \infty \), which characterizes a convergence to the infinity of an input flow intensity and a number of servers \(n = n(T) \). Denote \(e(t) = e_T(t) \), \(e(0) = 0 \), a number of customers arrived in the system at the moment \(t \) inclusive and \(Ee(t) = nat, \ t \geq 0 \), for some
a > 0. Assume that \(q(t) = q_T(t) \) is a number of busy servers in the system at the moment \(t \), \(q(0) = 0 \). Put \(\tau_j \) a service time of \(j \)-th customer of the input flow, \(\tau_j, j \geq 1 \), is a sequence of independent and identically distributed random variables (i.i.d.r.v’s) with the common distribution function \(F(t) (F = 1 - \bar{F}) \), which has continuous and bounded by \(f > 0 \) density.

Theorem 1. Assume that the following conditions are true.

1) There is the function \(B(n) \to \infty, T \to \infty \), such that the sequence of random processes \(x_T(t) = \frac{e(t) - E(e(t))}{B(n)}, T = 1,2,..., C \) - converges (see \(C \) - convergence definition in [1, chapter I, §2]) on \([0,t_0]\) to the partial Brownian motion \(\xi_H(t), 1/2 < H < 1 \), multiplied by \(\sigma \neq 0 \). 2) The inequality \(\rho = aE\tau_j < 1 \) is true. 3) The number of servers \(n = n(T) \) satisfies the conditions \(B(n)/A(n) \to B \geq 0, \sqrt{n}/A(n) \to K \geq 0, T \to \infty \), where \(A(n) = \max(B(n), \sqrt{n}) \). Then for any \(t_0 > 0 \) the relation \(P\left(\sup_{0 \leq t \leq t_0} q(t) = n \right) \to 0, T \to \infty \), is true.

Proof. From [1, ch. II, § 1, Theorem 1] the process \(z(t) = (q(t) - nQ(t))/A(n) \) with \(Q(t) = \int_0^t \bar{F}(u)du \) on any segment \([0,t_0]\) \(C \)- converges to the process \(\zeta(t) = \sigma \int_0^t \bar{F}(t - u)d\xi_H(u) + K\Theta(t), T \to \infty \). Here \(\Theta(t) \) is the centered gaussian process independent from \(\xi_H(t) \) with the covariation function \(R(t,t+u) = M\Theta(t)\Theta(t+u) = \int_0^t \bar{F}(v+u)F(v)adv \). For \(0 \leq t \leq t+u \leq t_0, C = K^2a(2t_0^2+1)+\sigma^2\bar{F}^{-1}(f_{t_0}+2H) \) from [2, Lemma 1], [3, Formula (1.1)] we have \(\varepsilon^2(t, t+u) = E(\zeta(t) - \zeta(t+u))^2 = K^2[R(t,t) + R(t+u, t+u) - 2R(t, t+u)] + \sigma^2E \int_0^t \bar{F}(t - v)d\xi_H(u) - \int_0^{t+u} \bar{F}(t + u - v)d\xi_H(u) \leq uC \).

Consequently the minimal number \(N(r) \) of balls with a radius \(r \) in the metric space \([0,t_0], \varepsilon \) covering the segment \([0,t_0] \) (here \(\varepsilon(t, t + u) \) is the half metric on \([0,t_0] \) satisfies the inequality \(N(r) \leq t_0Cr^{-2} \) and so Dadly integral \(\Psi(z) = \int_0^r (ln N(r))^{1/2}dr \) built from the relative entropy \(ln N(r) \) satisfies the condition: \(\Psi(t_0) < \infty \). So from [4] we have that \(P(\sup_{0 \leq t \leq t_0} \zeta(t) > u) \to 0, u \to \infty \). As \(n/\sqrt{n} \to \infty \) for \(n \to \infty \) so \(P\left(\sup_{0 \leq t \leq t_0} \zeta(t) \geq \frac{(1 - Q(T))n}{\max(\sigma, 1)\sqrt{n}} \right) \to 0. \) From \(C \)- convergence of the random process \(z_n(t) \) to the random process \(\zeta(t) \) for \(n \to \infty \) it is not difficult to obtain that \(P\left(\sup_{0 \leq t \leq t_0} q_n(t) = n \right) = P\left(\sup_{0 \leq t \leq t_0} q_n(t) \geq n \right) \leq P\left(\sup_{0 \leq t \leq t_0} z_n(t) \geq \frac{(1 - Q(T))n}{\max(\sigma, 1)\sqrt{n}} \right) \to 0. \) Theorem 1.1 is proved.
2 Multiserver queuing system with alternating input flow

Assume that an input flow is defined by ON and OFF periods [5, 6]: nonnegative i.i.d.r.v's \(X_0, X_1, X_2, \ldots \) are lengths of ON-periods, nonnegative i.i.d.r.v's \(Y_0, Y_1, Y_2, \ldots \) are lengths of OFF-periods and these random sequences are independent. Denote \(F_1(t) = P(X_1 < t), F_2(t) = P(Y_1 < t), t \geq 0, \) and put \(F_1(t) = t^{-\alpha_1}L_1(t), F_2(t) = t^{-\alpha_2}L_2(t), 1 < \alpha_1 < \alpha_2 < 2, \) where \(L_1(t), L_2(t) \) are slowly varying for \(t \to \infty \) functions.

Introduce independent r.v's \(B, X, Y \) which are independent from \(X_n, Y_n, n \geq 1, \) and \(Y_0 \) with distributions \(P(B=1) = \frac{\mu_1}{\mu}, P(B=0) = \frac{\mu_2}{\mu}, \mu = \mu_1 + \mu_2, \mu_1 = EX_1, \mu_2 = EY_1, P(X \leq x) = \frac{1}{\mu_1} \int_0^x F_1(s)ds, P(Y \leq x) = \frac{1}{\mu_2} \int_0^x F_2(s)ds. \)

Then the random sequence \(\{T_n\} : T_0 = B(X + Y_0) + (1 - B)Y, T_0 = T_0 + \sum_{i=1}^{n}(X_i + Y_i), n \geq 1, \) creates ON-OFF process \((I_A(x) \) is the indicator function of the set \(A) \)

\[W(t) = BI_{[0, X)}(t) + \sum_{n=0}^{\infty} I_{[T_n, T_{n+1}, X_{n+1}]}(t), t \geq 0. \]

The process \(W(t) \) is binary: \(W(t) = 1, \) if \(t \) contains in ON-period, \(W(t) = 0, \) if \(t \) contains in OFF-period and stationary as \(EW(t) = P(W(t) = 1) = \mu_1/\mu = \alpha. \)

Assume further that r.v's \(X_0, X_1, \ldots \) have only integer meanings (but r.v. \(X \) is not integer). Confront to the random ON-OFF process \(W(t) \) the sampled random flow of customers arrival moments: for \(B = 1 - \{1, ..., [X], T_0 + 1, ..., T_0 + X_1, T_1 + 1, ..., T_1 + X_2, ... \} \) and for \(B = 0 - \{T_0 + 1, ..., T_0 + X_1, T_1 + 1, ..., T_1 + X_2, ... \}. \) Here \([c] \) is the integer part of the real number \(c. \) Denote by \(A^*(t) \) the number of customers in the sample flow arrived to the moment \(t \geq 0, A_1^*(t), \ldots, A_M^*(t) \) are independent copies of the random process \(A^*(t). \)

Consider now the aggregated queuing system with \(n(T) = TM \) servers where \(M(T) = [T^\gamma], \gamma > 0, \) and with \(A_M^*(T) \) customers arrived to the moment \(t \) and with \(q_T(t) \) busy servers at the moment \(t. \)

Theorem 2.1 Assume that \(3 - \alpha_1 > \gamma > \alpha_1 - 1, \rho = aE\tau_j < 1. \) Then for \(T \to \infty \) and for any \(t_0 > 0 \) the relation \(P(q_T(t) = n(T)) \to 0 \) is true.

Proof. Without a restriction of a generality put that \(L_1(T) \to l > 0, T \to \infty. \) Assume that the sequence \(W_m(t), m = 1, ..., M, \) of the process \(W(t) \) independent copies by which the processes \(A_1^*(t), \ldots, A_M^*(t) \) are constructed. Denote

\[A_M(t) = \sum_{m=1}^{M} \int_0^t W_m(s)ds, d_T = [T^{3-\alpha_1}L_1(T)M]^{1/2}, \sigma^2 = \frac{2\mu_2^2\Gamma(2 - \alpha_1)}{(\alpha_1 - 1)\mu^3\Gamma(4 - \alpha_1)}, \]

\[A_M(t) = \sum_{m=1}^{M} \int_0^t W_m(s)ds, d_T = [T^{3-\alpha_1}L_1(T)M]^{1/2}, \sigma^2 = \frac{2\mu_2^2\Gamma(2 - \alpha_1)}{(\alpha_1 - 1)\mu^3\Gamma(4 - \alpha_1)}, \]
b(t) is the function converse to the function $1/F_1(t)$. Simple geometric considerations give the inequalities

$$0 \leq \int_0^t W(s)ds - A(t) \leq 2$$

and consequently

$$0 \leq A_M(Tt) - \sum_{m=1}^M A_m^*(Tt) \leq 2M, \ t \geq 0. \quad (1)$$

It is obvious that $d_T \sim l^{1/2}T^{(3+\gamma-\alpha_1)/2}, \ b(T) \sim (IT)^{1/\alpha_1}, \ T \to \infty$, and consequently $b(MT)/T \to \infty, \ M = o(d_T), \ T \to \infty$. So [6, Theorem 4] and Formula (1) lead to the C - convergence of the random process $(A_M^*(Tt) - EA_M^*(Tt))/d_T$ to the partial Brownian motion $\sigma \xi_H(t), \ H = (3 - \alpha_1)/2, \ T \to \infty$. So the condition 1 of Theorem 2.1 is true.

Put $B(MT) = d_T, \ A(MT) = \max(B(MT), \sqrt{MT})$. As for $T \to \infty \sqrt{MT}/B(MT) \to 0$ so $B(MT)/A(MT) \to 1, \ \sqrt{MT}/A(MT) \to 0$. Then the conditions 2, 3 of Theorem 1.1 are true and so Theorem 2.1 is proved.

References

Received: March 1, 2015; Published: April 12, 2015