Model Identification and Agitator Speed Optimization for Bioreactor Process Using Soft Computing Techniques

M. Sridevi
Department of Electronics& Communication Engineering
Saraswathy College of Engineering & Technology
Tindivanam, Villupuram 604307 Tamilnadu, India

P. Prakasam
Department of Electronics& Communication Engineering
United Institute of technology,
Coimbatore, 641020 Tamilnadu, India

P. MadhavaSarma
Department of Electronics& Communication Engineering
Saraswathy College of Engineering & Technology
Tindivanam, Villupuram 604307 Tamilnadu, India

Abstract

In biochemical industry process variables such as pH, temperature, dissolved oxygen and speed are the main parameters that need to be controlled for optimal cellular activity. These control implementations are achieved via regulation of flow rate of acid/base, flow rate of fluid through the cooling coil, and agitation respectively. This paper presents a fuzzy logic controller to optimize the speed of an agitator in a bioreactor system. An open loop test was conducted and model parameters were determined. The identified process was represented by first order plus dead time model (FOPDT). From the model parameters, PI and fuzzy tuned PI controllers were designed using MATLAB. The closed loop performance was
studied for both servo and regulator problems. Based on overshoot, rise time, settling time, and ISE, it was found that the fuzzy tuned PI controller is best suited for this process.

Keywords: FOPDT, ISE, Speed, PI Controller, Sacchromyc, Invertase

1 Introduction

Recent time’s fuzzy controllers that combine intelligent and conventional technique are commonly used for control of complex dynamic systems for their ability to handle uncertainty. In biochemical industry growth rate plays vital role, hence the control of growth rate over a short period of time for a biochemical process is highly significant. Edward katende et al [1] have developed non-linear generalized predictive control algorithm for batch reactor system. Stigter et al [2] have designed optimal parametric sensitivity controller for a fed batch reactor to estimate the growth rate. Valenica et al [3] have designed the controller using simulation technique for fed batch reactors. Choi et al [4] have designed non linear model-based control for batch polymerization reactor which generates the polymer molecular weight distribution. Soni et al [5] have used a multi scale model to describe the dynamic behavior of aerobic fed batch cultures of sacchromyces cursive. Shen [6] has identified the model using the dynamic data for semi-batch reactor.

2 Experimental Setup

The reactor with provisions for setting temperature, agitator speed, and pH and air flow was shown in figure1. The reactor was filled with the growing medium—yeast maltose, yeast extract – 3gm/l, malt extract – 3gm/l, dextrose – 10 gm/l, peptone – 5gm/l. The agitator was used for the proper mixing of nutrients and for equal distribution of oxygen within the medium to make it a homogenous mixture. In order to study the effect of agitation speed on cell and mixture two different experiments were carried out at bioreactor at 200 rpm and 350 rpm for 18 hours. For the measurement of dry cell weight 5ml of culture was centrifuged for 10 min at 10,000 rpm, washed twice with distilled water and dried at 105 c to constant weight. The agitator speed was monitored using an online Honeywell analyzer. A computer with Analog-to-Digital (A/D) and Digital-to-Analog (D/A) converters is employed for data acquisition and the control of the system.
3 Model Identification

A step-wise change of agitator speed ranging from 0 to 200 rpm and 200 to 350 rpm was introduced and the concentrations of mixture were studied. The results for two concentrations are presented and discussed below. The data in Figure 2 was fitted to a first order plus dead time model using SK technique discussed briefly in [15, 20] given by equation 1. Where K_p is the process gain, τ_d the time delay and τ is the process time constant. The model parameters are given in Table 1.

\[
G_p(s) = \frac{K_p e^{-\tau_d s}}{\tau s + 1}
\]

(1)

<table>
<thead>
<tr>
<th>SNo</th>
<th>Process Gain</th>
<th>Time constant (τ Minute)</th>
<th>Delay time (τ_d Minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>295</td>
<td>0.035</td>
<td>0.33</td>
</tr>
</tbody>
</table>

FIGURE 2 Comparison of experimental values for FOPDT model.
4 Effect Of pH, Temperature and Do Due To Agitator Speed

Aeration is an important design parameter in the bioreactor and by its efficient control the overall productivity of the process can be increased. Product’s requirements of oxygen depend on the energetic of the pathway leading to the product. Because the oxygen uptake is linked to the cellular metabolism, the oxygen dynamics reflect the changes in the environmental conditions. Oxygen is poorly soluble in water -and even less in fermentation broths- and is relatively scarce in air (20.8%). Oxygen transfer is usually helped by agitation that is also needed to mix nutrients and to keep the fermentation homogeneous. The impact in production yield was achieved by varying the above parameter with change in aeration, agitation system and stirrer speed. In order to obtain the best possible growing conditions the speed, pH and temperature levels are maintained at constant rate. To investigate the relationship between speed and concentration the effects of the other parameters with respect to the agitator speed were studied. The agitator speed was changed manually from 0 to 200 rpm and 200 to 350 rpm respectively. The response for dissolved oxygen, pH and temperature was shown in Figures3to5. From the Figure 3 it was observed that due to change in speed the variables such as dissolved oxygen, temperature, and pH also varies which affects the model parameters and growth rate of Sacchromyces cursive, In order to avoid the variation in the agitator speed during process operation optimal tuning values were selected using the fuzzy logic based PI control system.

FIGURE 3 Response for Do for step change in speed of Magnitude 150 rpm

FIGURE4 Response for pH for step change in speed of Magnitude 150 rpm
5 PI Controllers for the Bioreactor Process

A system consisting of a plant and a controller with unity feedback is shown in Figure 6. The controller output was given to bioreactor process. The PI controller optimum settings such as the critical gain \((Ku) = 14.33\), critical period \((Pu) = 24\), Proportional gain \((Kc) = 0.645\) and integral gain \((Ki) = 20\) were obtained by Ziegler Nichols tuning method. The designed PI controller was run for the both servo and regulator problem for 200 rpm. The variation in the speed was recorded in both the cases.
6 Design of Fuzzy Logic Controller

The block diagram of Mamdani type fuzzy control is shown in Figure 7. The fuzzy logic controller was developed here using two input variables E (Error) and CE (Change of error) and one controller output. The inputs E and CE are directly fed to the mamdani type fuzzy controller. Each of these variables have seven membership functions which are labeled as NB-negative big, NH-negative high, NS-negative small, ZE-zero, PS-positive small, PH-positive high, PB-positive big. Figure 7.1 (a) to 7.1 (c) shows error, change in error and controller output as a function of membership function respectively. The surface generated by the inputs is shown in Figure 8 and Table.2 depicts the 49 control rules developed for this process using E and CE as input. This set was defuzzified in the final step of the cycle, into a single value. The defuzzified values represent action taken by the fuzzy controller in individual control cycle.

<table>
<thead>
<tr>
<th>E/C E</th>
<th>NB</th>
<th>NH</th>
<th>NS</th>
<th>ZE</th>
<th>PS</th>
<th>PH</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NH</td>
<td>NS</td>
<td>ZE</td>
</tr>
<tr>
<td>NH</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NH</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>NB</td>
<td>NB</td>
<td>NH</td>
<td>NS</td>
<td>NE</td>
<td>PS</td>
<td>PH</td>
</tr>
<tr>
<td>ZE</td>
<td>NB</td>
<td>NH</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PH</td>
<td>PH</td>
</tr>
<tr>
<td>PS</td>
<td>NH</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PH</td>
<td>PH</td>
<td>PH</td>
</tr>
<tr>
<td>PH</td>
<td>NS</td>
<td>ZE</td>
<td>PS</td>
<td>PH</td>
<td>PH</td>
<td>PH</td>
<td>PH</td>
</tr>
<tr>
<td>PB</td>
<td>ZE</td>
<td>PS</td>
<td>PH</td>
<td>PB</td>
<td>PH</td>
<td>PH</td>
<td>PH</td>
</tr>
</tbody>
</table>
FIGURE 7.1 (a) Error (E) FIGURE 7.1 (b) Change of error (CE)

(c) controller output

FIGURE 7.1(c) Controller output (CO)

FIGURES 7.1(a)-7.1(c) Membership functions for error, change of error, controller output.

FIGURE 8 Bumpy Surface generated by the Input families E and CE
7 Results and Discussions

To evaluate closed loop performance of the PI controller for the process step change in the set point was introduced. Servo response to set point change of 200 units’ rpm for the process and the output response were shown in Figure 9. The +10 % changes in set point response are shown in Figure 10. Load disturbance of magnitude of 50 units at time 2000 seconds was given to process and there response was shown in Figure 11. The Uncertainty analysis of PI controller was shown in Figure 12. To evaluate the closed loop performance of the fuzzy PI controllers for the process, step change in set point and disturbance are introduced. Servo response to set point change for a step input of magnitude 150 units for the process response was shown in Figures 13 to 14 the comparison of controller performance was given in Table 3.

FIGURE 9 PI controller output response for Bioreactor process

FIGURE 10 PI controllers output response for Set point Change of Bioreactor process
FIGURE 11 Regulator responses for bioreactor process

FIGURE 12 Uncertainty analysis of a PI controller

FIGURE 13 Comparison of servo responses of the controllers to set point change 350 units
FIGURE 14 Comparison of servo responses of the controllers to load change 350 units

TABLE 3 Comparison between PI and Fuzzy controller

<table>
<thead>
<tr>
<th>Tuning Method</th>
<th>Peak Overshoot</th>
<th>Rise Time</th>
<th>Settling Time</th>
<th>Load ISE</th>
<th>Servo ISE</th>
<th>Decay ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>2.07</td>
<td>210</td>
<td>4150</td>
<td>429.4750</td>
<td>445.832</td>
<td>0.01225</td>
</tr>
<tr>
<td>FUZZY</td>
<td>0</td>
<td>50</td>
<td>2000</td>
<td>250.0</td>
<td>279.1</td>
<td>0</td>
</tr>
</tbody>
</table>

8 Conclusions

In this work model was identified using Sunderson Krishnasamy (SK) algorithm. The results given in Table 3 emphasize that the fuzzy logic controller shows a minimum dynamic response time than the conventional controller, while conventional controllers reaches the set point smoothly. It is evident from Table 3 that the Fuzzy tuned PI controller offers best time domain characteristics such as
rise time, settling time, overshoot, for the bioreactor process and optimize the agitator speed of the bioreactor.

References

Model identification and agitator speed optimization

Received: December 15, 2014; Published: March 21, 2015