Pointwise Negative Binomial Approximation for Geometric Summands

K. Teerapabolarn

Department of Mathematics, Faculty of Science
Burapha University, Chonburi 20131, Thailand

Copyright © 2015 K. Teerapabolarn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Stein’s method and the geometric w-functions are used to derive a non-uniform bound for the point metric between the distribution of a sum of n independent geometric random variables, each with parameter $p_i = 1 - q_i$, and a negative binomial distribution with parameters n and $p = 1 - q = \frac{n}{n + \sum_{i=1}^{n} \frac{q_i}{p_i}}$. With this bound, it gives a good approximation when all q_i are small or all q_i are close to q.

Mathematics Subject Classification: 60F05, 60G50

Keywords: Geometric distribution, negative binomial approximation, Stein’s method, geometric w-function

1 Introduction

Let $X_1, ..., X_n$ be independently distributed geometric random variables, each with probability function $p_{X_i}(k) = p_i q_i^k$ for $k \in \mathbb{N} \cup \{0\}$, and mean $\mu_i = \frac{q_i}{p_i}$ and variance $\sigma_i^2 = \frac{q_i}{p_i^2}$, where $q_i = 1 - p_i$. Let $S_n = \sum_{i=1}^{n} X_i$ and $NB_{n,p}$ denote the negative binomial random variable with parameters n and $p = \frac{n}{n + \sum_{i=1}^{n} \frac{q_i}{p_i}}$. In this case, Vellaisamy and Upadhye [6] used Kerstan’s method to give a uniform bound for the distance between the distributions of S_n and NB as follows:

$$d_A(S_n, NB_{n,p}) \leq \min \left\{ 1.37 \sum_{i=1}^{n} \frac{1}{p_i} \left| 1 - \frac{p_i}{p} \right| \min \left(2, \sqrt{\frac{2}{nq_e}} \right), 1 \right\},$$

(1.1)
where \(d_A(S_n, NB_{n,p}) = |P(S_n \in A) - P(NB_{n,p} \in A)| \). Recently, Teerapabolarn [5] used Stein’s method and the geometric \(w \)-functions to give a uniform bound

\[
d_A(S_n, NB_{n,p}) \leq \frac{1 - p^n}{n} \sum_{i=1}^{n} \left| \frac{q_i}{p_i} - \frac{q}{p} \right| \frac{q_ip}{q_ip_i},
\]

which is sharper than that in (1.1). However, for \(A = \{x_0; x_0 \in \mathbb{N} \cup \{0\}\} \) and \(d_{x_0}(S_n, NB_{n,p}) = |P(S_n = x_0) - P(NB_{n,p} = x_0)| \), the result in (1.2) becomes

\[
d_{x_0}(S_n, NB_{n,p}) \leq \frac{1 - p^n}{n} \sum_{i=1}^{n} \left| \frac{q_i}{p_i} - \frac{q}{p} \right| \frac{q_ip}{q_ip_i}
\]

for every \(x_0 \). It is observed that the bound is a uniform constant for the point metric \(d_{x_0}(S_n, NB_{n,p}) \). In this situation, a non-uniform bound with respect to \(x_0 \) is required. In this paper, we focus on deriving a non-uniform bound for \(d_{x_0}(S_n, NB_{n,p}) \) by using Stein’s method and the geometric \(w \)-functions, which are in Section 2. In Section 3, we derive the desired result of this study, and the conclusion of this study is presented in the last section.

2 Method

The following lemma gives the geometric \(w \)-functions, which are directly obtained from [3].

Lemma 2.1. For \(1 \leq i \leq n \), let \(w_i \) be the \(w \)-function associated with the geometric random variable \(X_i \), then we have the following:

\[
w_i(k) = \frac{(1+k)q_i}{p_i \sigma_i^2}, \quad k \in \mathbb{N} \cup \{0\}.
\]

The following relation is an important property for proving the result, which was stated by [2].

\[
Cov(S_n, f(S_n)) = \sum_{i=1}^{n} Cov \left(X_i, f \left(X_i + \sum_{j \neq i} X_j \right) \right)
= \sum_{i=1}^{n} \sigma_i^2 E[w_i(X_i) \Delta f(S_n)],
\]

for any function \(f : \mathbb{N} \cup \{0\} \to \mathbb{R} \) for which \(E|w_i(X_i) \Delta f(S_n)| < \infty \), where \(\Delta f(x) = f(x+1) - f(x) \).

For Stein’s method in the negative binomial approximation, it can be applied for every \(n \in \mathbb{N} \) and \(0 < p = 1 - q < 1 \), for every \(x_0 \in \mathbb{N} \cup \{0\} \) and
bounded real-valued function \(f = f(x_0) : \mathbb{N} \cup \{0\} \to \mathbb{R} \) defined as in Brown and Phillips [1]. So, Stein’s equation for these conditions is as follows:

\[
P(S_n = x_0) - P(NB_{n,p} = x_0) = E[q(n + S_n)f(S_n + 1) - S_nf(S_n)]. \tag{2.3}
\]

For \(x_0 \in \mathbb{N} \cup \{0\} \) and \(x \in \mathbb{N} \), [4] showed that

\[
\sup_{x \geq 1} |\Delta f(x)| \leq \delta(x_0) = \begin{cases} \frac{1-p^n}{nq} & \text{if } x_0 = 0, 1, \\ \min \left\{ \frac{1}{x_0}, \frac{1-p^n}{(n+x_0-1)q} \right\} & \text{if } x_0 > 1. \end{cases} \tag{2.4}
\]

3 Result

The following theorem presents a non-uniform bound on the pointwise negative binomial approximation to the distribution of \(S_n \).

Theorem 3.1. For \(x_0 \in \mathbb{N} \cup \{0\} \), then we have the following:

\[
d_{x_0}(S_n, NB_{n,p}) \leq \delta(x_0) \sum_{i=1}^{n} \frac{q_i}{p_i} - q \frac{q_i p}{p_i}, \tag{3.1}
\]

where \(\delta(x_0) \) is defined in (2.4).

Proof. From (2.3), it follows that

\[
d_{x_0}(S_n, NB_{n,p}) = \left| E[nqf(S_n + 1) + qS_n\Delta f(S_n) - pS_nf(S_n)] \right|
\]

\[
= p \left| \frac{nq}{p} E[\Delta f(S_n)] + \frac{q}{p} E[S_n \Delta f(S_n)] - Cov(S_n, f(S_n)) \right|.
\]

Using (2.2) and lemma 2.1, we have

\[
d_{x_0}(S_n, NB_{n,p}) = p \left| \sum_{i=1}^{n} \left\{ E \left[\left(\mu_i + \frac{q}{p} X_i \right) \Delta f(S_n) \right] - \sigma_i^2 E[w_i(X_i)\Delta f(S_n)] \right\} \right|
\]

\[
\leq p \sum_{i=1}^{n} E \left\{ \left| \frac{q_i}{p_i} + \frac{q}{p} X_i - \sigma_i^2 w_i(X_i) \right| \Delta f(S_n) \right\}
\]

\[
\leq \sup_{x \geq 1} |\Delta f(x)| p \sum_{i=1}^{n} E \left\{ \left| \frac{q_i}{p_i} + \frac{q}{p} X_i - (1 + X_i) \frac{q_i}{p_i} \right| \right\}
\]

\[
\leq \delta(x_0) \sum_{i=1}^{n} \left| \frac{q_i}{p_i} - \frac{q}{p} \right| \frac{q_i p}{p_i}.
\]

Hence, (3.1) is obtained. \(\square \)
4 Conclusion

In this study, a non-uniform bound for the point metric between the distribution of a sum of independent geometric random variables and a negative binomial distribution with parameters n and $p = \frac{n}{n+\sum_{i=1}^{n} \frac{q_i}{p}}$ was derived by Stein’s method and the geometric w-functions. With this bound, it gives a good approximation when all q_i are small or all q_i are close to q. In addition, the bound in this study is sharper than that presented in (1.3).

References

Received: January 30, 2015; Published: March 3, 2015