L–Fuzzy T–Ideals of β–Algebras

K. Rajam

Department of Mathematics
Mohamed Sathak Engineering College
Kilakarai-623806, India

M. Chandramouleeswaran

Department of Mathematics
Saiva Bhanu Kshatriya College
Aruppukottai - 626101, India

Abstract

In this paper, we introduce the notion of L– fuzzy T–ideals of β–algebras and investigate some of their properties.

Mathematics Subject Classification: 03E72, 06F35, 03G25

Keywords: β–algebras, L– Fuzzy β–subalgebra, L– Fuzzy T–ideals

1 Introduction

J.Neggers and H.S. Kim introduced the notion of β–algebras [4]. An important point in the evaluation of the modern concept of uncertainty was the notion of fuzzy sets introduced by Lofti A. Zadeh[7]. L.Goguen [3] generalized the notion of fuzzy sets into the notion of L–fuzzy sets. For the general study of structures of β– algebras, the ideal theory and fuzzy ideal theory play an important role.

In [1] the authors have introduced the notion of fuzzy β– subalgebras of β–algebras. In [2] they have introduced the notion of fuzzy β–ideals of β–algebras. In [5], we introduced the notion of L– fuzzy β– subalgebras of...
β-algebras and investigated their properties. In [6], we introduced the notion of L-fuzzy β-ideals of β-algebras and investigated their properties. In this paper, we introduce the notion of L-fuzzy T-ideals of a β-algebra, and investigate some of their properties.

2 Preliminaries

In this section we recall some basic definitions that are required in the sequel.

Definition 2.1 [4] A β-algebra is a non-empty set X with a constant 0 and two binary operations $+$ and $-$ satisfying the following axioms:

1. $x - 0 = x$.
2. $(0 - x) + x = 0$.
3. $(x - y) - z = x - (z + y) \forall x, y, z \in X$.

Example 2.2 Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with constant 0 and two binary operations $+$ and $-$ defined by the Cayley tables:

\[
\begin{array}{cccccc}
+ & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 0 & 4 & 5 & 2 & 3 \\
2 & 2 & 5 & 0 & 4 & 3 & 1 \\
3 & 3 & 4 & 5 & 0 & 1 & 2 \\
4 & 4 & 3 & 1 & 2 & 5 & 0 \\
5 & 5 & 2 & 3 & 1 & 0 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
- & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 0 & 4 & 5 & 3 & 2 \\
2 & 2 & 5 & 0 & 4 & 1 & 3 \\
3 & 3 & 4 & 5 & 0 & 2 & 1 \\
4 & 4 & 3 & 1 & 2 & 0 & 5 \\
5 & 5 & 2 & 3 & 1 & 4 & 0 \\
\end{array}
\]

Then $(X, +, -, 0)$ is a β-algebra.

Definition 2.3 Let X be any non-empty set. A L-fuzzy set μ on X is defined as a function $\mu : X \rightarrow L$, where L is a complete lattice with glb 0 and lub 1.

Definition 2.4 Let μ be a fuzzy set in a set X. For $t \in [0, 1]$, then the set $\mu_t = \{x \in X / \mu(x) \geq t\}$ is called a level subset of μ.

Definition 2.5 [1] Let μ be a fuzzy set in a β-algebra X. Then μ is called a L-fuzzy β-subalgebra of X if

1. $\mu(x + y) \geq \mu(x) \land \mu(y) \forall x, y \in X$.
2. $\mu(x - y) \geq \mu(x) \land \mu(y) \forall x, y \in X$.
3 \hspace{1em} \textit{L– Fuzzy T- ideals of }\beta\text{–algebras}

In this section we introduce the notion of \textit{L–fuzzy T–ideals of }\beta\text{–algebras} and prove some simple theorems.

\textbf{Definition 3.1} A non-empty subset \(I\) of a \(\beta\)-algebra of \((X,+,−,0)\) is called \(T\)- ideal of \(X\) if the following conditions are satisfied.

1. \(0 \in I\)
2. \((x + y) + z \in I\) and \(y \in I \Rightarrow (x + z) \in I\) and
3. \((x − y) − z \in I\) and \(y \in I \Rightarrow (x − z) \in I\) \(\forall x, y, z \in I\).

\textbf{Example 3.2} In example 2.2 of the \(\beta\)-algebra of \(X\), \(I_1 = \{0, 2\}\) is a \(T\)-ideal of \(X\) while \(I_2 = \{0, 4\}\) is not a \(T\)-ideal of \(X\) - for, \((0+4)+4 = 4+4 = 5 \notin I_2\).

\textbf{Definition 3.3} Let \(\mu\) be an \(L\)-fuzzy set in a \(\beta\)-algebra of \(X\). Then \(\mu\) is called an \(L\)-fuzzy \(T\)- ideal of \(X\) if

1. \(\mu(0) \geq \mu(x)\).
2. \(\mu(x + z) \geq \mu((x + y) + z) \land \mu(y)\) and
3. \(\mu(x − z) \geq \mu((x − y) − z) \land \mu(y)\) \(\forall x, y, z \in X\).

\textbf{Example 3.4} In the \(\beta\)-algebra \(X\) of example 2.2, the fuzzy set \(\mu_1 : X \rightarrow [0,1]\) defined by

\[
\mu_1(x) = \begin{cases}
 t_5 & \text{if} \quad x = 0 \\
 t_4 & \text{if} \quad x = 1 \\
 t_3 & \text{if} \quad x = 2 \\
 t_2 & \text{if} \quad x = 3 \\
 t_1 & \text{if} \quad x = 4, 5
\end{cases}
\]

where \(0 \leq t_1 < t_2 < t_3 < t_4 < t_5 \leq 1, t_1, t_2, t_3, t_4, t_5 \in L\) is an \(L\)-fuzzy \(T\)-ideal of \(X\).

\textbf{Lemma 3.5} Let \(\mu\) be an \(L\)-fuzzy \(T\)-ideal of a \(\beta\)-algebra \(X\). If \(x \leq y\) then \(\mu(x) \geq \mu(y)\).

\textbf{Proof:} For \(x, y \in X, \; x \leq y \Rightarrow x − y = 0\). Then

\[
\mu(x) = \mu(x - 0) \geq \mu((x - y) - 0) \land \mu(y) = \mu(0 - 0) \land \mu(y) = \mu(0) \land \mu(y) = \mu(y).
\]

Hence \(\mu(x) \geq \mu(y)\).
Theorem 3.6 Let A be a subset of X. Define an $L-$fuzzy set $\mu :X \rightarrow [0,1]$ such that

$$\mu(x) = \begin{cases}
 t_0 & \text{if } x \in A \\
 t_1 & \text{if } x \notin A
\end{cases}$$

where $t_0, t_1 \in [0,1]$ with $t_0 > t_1$. Then μ is an $L-$fuzzy $T-$ideal of a $\beta-$algebra X if and only if A is a $T-$ideal of X.

Proof: Assume that μ is an $L-$fuzzy $T-$ideal of X.
If $x \in A, \mu(0) \geq t_0.$
and if $x \notin A, \mu(0) \geq t_1$ since $t_0 > t_1$.
$\Rightarrow \mu(0) \geq t_0 > t_1$
$\Rightarrow \mu(0) = t_0$
$\Rightarrow 0 \in A.$
For $x, y, z \in A \Rightarrow \mu(x) = t_0, \mu(y) = t_0$ and $\mu(z) = t_0.$

$$\mu(x + z) \geq \mu((x + y) + z) \wedge \mu(y)$$
$$\geq (\mu(x + y) \wedge \mu(z)) \wedge \mu(y)$$
$$= (((\mu(x) \wedge \mu(y)) \wedge \mu(z))) \wedge \mu(y)$$
$$= t_0 \wedge t_0 \wedge t_0$$
$$= t_0$$

Therefore $\mu(x + z) \geq t_0 \Rightarrow x + z \in A.$
For $x, y, z \in A \Rightarrow \mu((x - y) - z) = t_0$ and $\mu(y) = t_0.$
Now $\mu(x - z) \geq \mu((x - y) - z) \wedge \mu(y) = t_0 \wedge t_0 = t_0$
$\Rightarrow \mu(x - z) = t_0 \Rightarrow x - z \in A.$
Hence A is a $T-$ideal of X.
Conversely, Suppose A is a $T-$ideal of X.
Now $0 \in A \Rightarrow \mu(0) = t_0.$
Also $\forall x \in X, Im(\mu) = \{t_0, t_1\}$ and $t_0 > t_1$
$\Rightarrow \mu(0) \geq \mu(x).$
Since A is a $T-$ideal of X,
$\forall x, y, z \in S, (x + y) + z \in A$ and $y \in A \Rightarrow x + z, x - z \in A.$
Then $\mu(x + z) = t_0 \geq \mu((x + y) + z) \wedge \mu(y).$
Similarly we can prove that $\mu(x - z) \geq \mu((x - y) - z) \wedge \mu(y).$
Hence μ is an $L-$fuzzy $T-$ideal of X.

Theorem 3.7 An $L-$fuzzy set μ is a $T-$ideal of X if and only if the non empty level subset μ_t is a $T-$ideal of $X, \forall t \in [0,1].$

Proof: Assume that μ is an $L-$fuzzy $T-$ideal of X.
Now $\mu(0) \geq \mu(x) \ \forall x \in X$
$\Rightarrow \mu(0) \geq t$ for any $t \in [0,1] \Rightarrow 0 \in \mu_t, \forall t \in [0,1].$
For any $t \in [0,1], \mu_t \neq \emptyset.$
For any $x, y, z \in \mu_t$, we have $\mu((x + y) + z) \geq t$ and $\mu(y) \geq t$.

Now $\mu(x + z) \geq \mu((x + y) + z) \wedge \mu(y) \geq t \Rightarrow x + z \in \mu_t$.

Also we have $\mu((x - y) - z) \geq t$ and $\mu(y) \geq t$.

Hence $\mu((x - y) - z) \geq \mu((x - y) - z) \wedge \mu(y) \geq t \wedge t = t \Rightarrow x - z \in \mu_t$.

Hence μ_t is a T-ideal of X.

Conversely assume that each non-empty level subset μ_t of a fuzzy subset μ of X is a T-ideal of X.

Then we claim that μ is an L-fuzzy T-ideal of X.

For any $x \in X$, let $\mu(x) = t$. Since μ_t is a T-ideal of X, $0 \in \mu_t$.

$\Rightarrow \mu(0) \geq \mu(x)$, $\forall x \in X$.

Choose $x, y, z \in X$, such that $\mu((x + y) + z) = t_1$ and $\mu(y) = t_2$, where $t_1, t_2 \in [0, 1]$. Then $x + z \in \mu_{t_1}$ and $y \in \mu_{t_2}$.

Assume $t_1 \leq t_2$. Then $\mu_{t_2} \subseteq \mu_{t_1}$, hence $y \in \mu_{t_1}$.

Since μ_t is a T-ideal of X, we have $x + z \in \mu_{t_1}$.

Thus $\mu(x + z) \geq t_1 = \mu((x + y) + z) \wedge \mu(y)$.

Similarly we can prove that $\mu((x - y) - z) \geq \mu((x - y) - z) \wedge \mu(y)$.

Therefore μ is an L-fuzzy T-ideal of X.

Theorem 3.8 Let μ_1 and μ_2 be two L-fuzzy T-ideals in a β-algebra X.

Then the direct product $\mu_1 \times \mu_2$ is an L-fuzzy T-ideals in $X_1 \times X_2$.

Proof For any $(x, y) \in X_1 \times X_2$ we have

$$(\mu_1 \times \mu_2)(0, 0) = \mu_1(0) \wedge \mu_2(0)$$

$$\geq \mu_1(x) \wedge \mu_2(y)$$

$$= (\mu_1 \times \mu_2)(x, y)$$

Let $(x_1, x_2), (y_1, y_2)$ and $(z_1, z_2) \in X_1 \times X_2$. Then

$$(\mu_1 \times \mu_2)((x_1, x_2) + (z_1, z_2))$$

$$= (\mu_1 \times \mu_2)((x_1 + z_1, x_2 + z_2))$$

$$= \mu_1(x_1 + z_1) \wedge \mu_2(x_2 + z_2)$$

$$\geq (\mu_1((x_1 + y_1) + z_1) \wedge \mu_1(y_1)) \wedge (\mu_2((x_2 + y_2) + z_2) \wedge \mu_2(y_2))$$

$$= (\mu_1((x_1 + y_1) + z_1) \wedge \mu_2((x_2 + y_2) + z_2)) \wedge (\mu_1(y_1) \wedge \mu_2(y_2))$$

$$= (\mu_1 \times \mu_2)((x_1 + y_1) + z_1, (x_2 + y_2) + z_2)$$

$$= (\mu_1 \times \mu_2)(((x_1 + y_1), (x_2 + y_2)) + (z_1, z_2)) \wedge (\mu_1 \times \mu_2)(y_1, y_2)$$

$$= (\mu_1 \times \mu_2)(((x_1, x_2), (y_1, y_2)) + (z_1, z_2)) \wedge (\mu_1 \times \mu_2)(y_1, y_2)$$

Similarly we can prove that

$$(\mu_1 \times \mu_2)((x_1, x_2) - (z_1, z_2)) \geq (\mu_1 \times \mu_2)(((x_1, x_2), (y_1, y_2)) + (z_1, z_2)) \wedge (\mu_1 \times \mu_2)(y_1, y_2)$$

Hence $\mu_1 \times \mu_2$ is an L-fuzzy T-ideal of a β-algebra in $X_1 \times X_2$.

Theorem 3.9 Let μ_1 and μ_2 be two fuzzy sets in a $\beta-$ algebra X such that $\mu_1 \times \mu_2$ is an $L-$ fuzzy T-ideal of $X_1 \times X_2$. Then

1. Either $\mu_1(0) \geq \mu_1(x)$ or $\mu_2(0) \geq \mu_2(x)$ $\forall x \in X$.

2. If $\mu_1(0) \geq \mu_1(x)$, $\forall x \in X$ then either $\mu_2(0) \geq \mu_1(x)$ or $\mu_2(0) \geq \mu_2(x)$.

3. If $\mu_2(0) \geq \mu_2(x)$, $\forall x \in X$ then either $\mu_1(0) \geq \mu_1(x)$ or $\mu_1(0) \geq \mu_2(x)$.

4. Either μ_1 or μ_2 is a $L-$ fuzzy T-ideal of X.

Proof: Let $\mu_1 \times \mu_2$ is an $L-$ fuzzy T-ideal of $X_1 \times X_2$.

Suppose that $\mu_1(0) < \mu_1(x)$ and $\mu_2(0) < \mu_2(y)$ for some $x, y \in X$. Then

$$(\mu_1 \times \mu_2)(x, y) = \mu_1(x) \land \mu_2(y) \geq \mu_1(0) \land \mu_2(0) = (\mu_1 \times \mu_2)(0, 0)$$

This contradiction yields that either $\mu_1(0) \geq \mu_1(x)$ or $\mu_2(0) \geq \mu_2(x)$ $\forall x \in X$. Given $\mu_1(0) \geq \mu_1(x)$, $\forall x \in X$ and assume that there exist $x, y \in X$ such that $\mu_2(0) < \mu_1(x)$ and $\mu_2(0) < \mu_2(y)$ $\forall x, y \in X$.

Now $\mu_2(0) < \mu_1(x) \leq \mu_1(0) \Rightarrow \mu_2(0) < \mu_1(0)$.

Then $(\mu_1 \times \mu_2)(0, 0) = \mu_1(0) \land \mu_2(0) = \mu_2(0)$.

$(\mu_1 \times \mu_2)(x, y) = \mu_1(x) \land \mu_2(y) \geq \mu_2(0) \land \mu_2(0) = \mu_2(0) = (\mu_1 \times \mu_2)(0, 0)$

Thus $(\mu_1 \times \mu_2)(x, y) \geq (\mu_1 \times \mu_2)(0, 0)$ which is a contradiction.

Hence if $\mu_1(0) \geq \mu_1(x)$, $\forall x \in X$ then either $\mu_2(0) \geq \mu_1(x)$ or $\mu_2(0) \geq \mu_2(x)$.

Similarly we can prove that if $\mu_2(0) \geq \mu_2(x)$, $\forall x \in X$ then either $\mu_1(0) \geq \mu_1(x)$ or $\mu_1(0) \geq \mu_2(x)$.

First we prove that μ_2 is a $L-$ fuzzy T-ideal of X.

Assume that $\mu_2(0) \geq \mu_2(x)$ $\forall x \in X$.

Then it follows that either $\mu_1(0) \geq \mu_1(x)$ or $\mu_1(0) \geq \mu_2(x)$.

If $\mu_1(0) \geq \mu_2(x)$ for any $x \in X$. Then

$$\begin{align*}
\mu_2(x) & \geq \mu_1(0) \land \mu_2(x) \\
& = (\mu_1 \times \mu_2)(0, x) \\
\mu_2(x + z) & \geq \mu_1(0) \land \mu_2(x + z) \\
& = (\mu_1 \times \mu_2)(0, x + z) \\
& = (\mu_1 \times \mu_2)(0 + 0, x + z) \\
& = (\mu_1 \times \mu_2)((0, x) + (0, z)) \\
& \geq (\mu_1 \times \mu_2)(((0, x) + (0, y)) + (0, z)) \land (\mu_1 \times \mu_2)(0, y) \\
& = (\mu_1 \times \mu_2)(((0 + 0), (x + y)) + (0, z)) \land (\mu_1 \times \mu_2)(0, y) \\
& = (\mu_1 \times \mu_2)(((0 + 0) + 0, (x + y) + z)) \land (\mu_1 \times \mu_2)(0, y) \\
& = (\mu_1 \times \mu_2)((0, (x + y) + z)) \land (\mu_1 \times \mu_2)(0, y) \\
& = \mu_2((x + y) + z) \land \mu_2(y)
\end{align*}$$
Similarly we can prove that \(\mu_2(x - z) \geq \mu_2((x - y) - z)) \land \mu_2(y) \).
Hence \(\mu_2 \) is a \(L^{-}\) fuzzy \(T\)-ideal of \(X \).
Similarly we can prove that \(\mu_1 \) is a \(L^{-}\) fuzzy \(T\)-ideal of \(X \).

Theorem 3.10 Let \(f : X \rightarrow X \) be an endomorphism on a \(\beta^{-}\) algebra. Let \(\mu \) be an \(L^{-}\) fuzzy \(T\)-ideal of \(X \). Define a fuzzy set \(\mu_f : X \rightarrow [0,1] \) defined by \(\mu_f(x) = \mu(f(x)), \forall x \in X \). Then \(\mu_f \) is an \(L^{-}\) fuzzy \(T\)-ideal of \(X \).

Proof: Let \(x \in X \). Then \(\mu_f(x) = \mu(f(x)) \leq \mu(0) = \mu(f(0)) = \mu_f(0) \).
Let \(x, y \in X \).

\[
\begin{align*}
\mu_f(x + z) &= \mu(f(x + z)) = \mu(f(x) + f(z)) \\
&\geq \mu((f(x) + f(y)) + f(z)) \land \mu(f(y)) \\
&= \mu((f(x + y)) + f(z)) \land \mu(f(y)) \\
&= \mu(f((x + y) + z)) \land \mu(f(y)) \\
&= \mu_f((x + y) + z)) \land \mu_f(y)
\end{align*}
\]
Similarly we can prove that \(\mu_f(x - z) \geq \mu_f((x - y) - z)) \land \mu_f(y) \).
Hence \(\mu_f \) is an \(L^{-}\) fuzzy \(T\) - ideal of \(X \).

References

http://dx.doi.org/10.1016/s0019-9958(65)90241-x

Received: September 24, 2015; Published: December 12, 2015