Characterizations of Fuzzy Subalgebras in BCK/BCI-Algebras

G. Muhiuddin
Department of Mathematics
University of Tabuk
Tabuk 71491, Saudi Arabia

Seok-Zun Song
Department of Mathematics
Jeju National University
Jeju 690-756, Korea

Hee Sik Kim
Department of Mathematics
Hanyang University
Seoul 133-791, Korea

Young Bae Jun
Department of Mathematics Education
Gyeongsang National University
Jinju 660-701, Korea

Abstract
The concepts of $(\in, \in \vee q_0^\delta)$-fuzzy subalgebras and $\in \vee q_0^\delta$-level sets
are introduced, and related properties are investigated. Relations between an \((\in, \in)\)-fuzzy subalgebra and an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra are discussed, and characterizations of \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebras are discussed. Homomorphic image and pre-image of an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra are considered.

Mathematics Subject Classification: 06F35, 03G25, 08A72

Keywords: Fuzzy subalgebra, \(\in \lor q_0^\delta\)-level set, \(\delta\)-characteristic fuzzy set

1 Introduction

Murali [7] proposed a definition of a fuzzy point belonging to fuzzy subset under a natural equivalence on fuzzy subset. The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [8], played a vital role to generate some different types of fuzzy algebraic structures. It is worth pointing out that Bhakat and Das [1, 2] gave the concepts of \((\alpha, \beta)\)-fuzzy subgroups by using the “belongs to” relation \((\in)\) and “quasi-coincident with” relation \((q)\) between a fuzzy point and a fuzzy subgroup, and introduced the concept of an \((\in, \in \lor q)\)-fuzzy subgroup. In particular, \((\in, \in \lor q)\)-fuzzy subgroup is an important and useful generalization of Rosenfeld’s fuzzy subgroup. Also, Jun [3, 4] considered the concepts of \((\alpha, \beta)\)-fuzzy subalgebras by using the “belongs to” relation \((\in)\) and “quasi-coincident with” relation \((q)\) between a fuzzy point and a fuzzy subalgebra, and introduced the concept of an \((\in, \in \lor q)\)-fuzzy subalgebra. As a general form of “quasi-coincident with” relation \((q)\), Jun et al. [5] introduced the concept of “\(\delta\)-quasi-coincident with” relation \((q_0^\delta)\), and apply it to fuzzy subgroups.

In this paper, we apply this new notion to \(BCK/BCI\)-algebras. We introduce the notion of \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebras, which is a generalization of \((\in, \in \lor q)\)-fuzzy subalgebras, and investigate related properties. We discuss relations between an \((\in, \in)\)-fuzzy subalgebra and an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra. We give a condition for an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra to be an \((\in, \in)\)-fuzzy subalgebra. We provide characterizations of an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra. We consider the homomorphic (pre) image of an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra.

2 Preliminaries

By a \(BCI\)-algebra we mean an algebra \((X, *, 0)\) of type \((2,0)\) satisfying the axioms:

(i) \(\forall x, y, z \in X)((x * y) * (x * z)) * (z * y) = 0)\),
Characterizations of fuzzy subalgebras

(ii) \((\forall x, y \in X) ((x * (x * y)) * y = 0),\)

(iii) \((\forall x \in X) (x * x = 0),\)

(iv) \((\forall x, y \in X) (x * y = y * x = 0 \Rightarrow x = y).\)

We can define a partial ordering \(\leq\) by \(x \leq y\) if and only if \(x * y = 0\). If a BCI-algebra \(X\) satisfies \(0 * x = 0\) for all \(x \in X\), then we say that \(X\) is a BCK-algebra. A nonempty subset \(S\) of a BCK/BCI-algebra \(X\) is called a subalgebra of \(X\) if \(x * y \in S\) for all \(x, y \in S\). We refer the reader to the books [6] for further information regarding BCK/BCI-algebras.

A fuzzy set \(\lambda\) in a set \(X\) of the form

\[
\lambda(y) := \begin{cases}
 t \in (0, 1] & \text{if } y = x, \\
 0 & \text{if } y \neq x,
\end{cases}
\]

is said to be a fuzzy point with support \(x\) and value \(t\) and is denoted by \(x_t\).

For a fuzzy point \(x_t\) and a fuzzy set \(\lambda\) in a set \(X\), Pu and Liu [8] gave meaning to the symbol \(x_t \alpha \lambda\), where \(\alpha \in \{\in, q, \in \vee q, \in \wedge q\}\).

To say that \(x_t \in \lambda\) (resp. \(x_t q \lambda\)) means that \(\lambda(x) \geq t\) (resp. \(\lambda(x) + t > 1\)), and in this case, \(x_t\) is said to belong to (resp. be quasi-coincident with) a fuzzy set \(\lambda\).

To say that \(x_t \in \in \vee q \lambda\) (resp. \(x_t \in \in \wedge q \lambda\)) means that \(x_t \in \lambda\) or \(x_t q \lambda\) (resp. \(x_t \in \lambda\) and \(x_t q \lambda\)).

Jun et al. [5] considered a general form of quasi-coincident fuzzy point. Let \(\delta \in (0, 1]\). For a fuzzy point \(x_t\) and a fuzzy set \(\lambda\) in a set \(X\), we say that \(x_t\) is a \(\delta\)-quasi-coincident with \(\lambda\), written \(x_t q_0^\delta \lambda\), (see [5]) if \(\lambda(x) + t > \delta\).

Obviously, \(x_t q \lambda\) implies \(x_t q_0^\delta \lambda\). If \(\delta = 1\), then the \(\delta\)-quasi-coincident with \(\lambda\) is the quasi-coincident with \(\lambda\), that is, \(x_t q_0^1 \lambda = x_t q \lambda\).

To say that \(x_t \in \in \vee q_0^\delta \lambda\) (resp. \(x_t \in \in \wedge q_0^\delta \lambda\)) means that \(x_t \in \lambda\) or \(x_t q_0^\delta \lambda\) (resp. \(x_t \in \lambda\) and \(x_t q_0^\delta \lambda\)).

3 Generalizations of \((\in, \in \vee q)\)-fuzzy subalgebras

In what follows let \(\delta\) and \(X\) denote an element of \((0, 1]\) and a BCK/BCI-algebra, respectively, unless otherwise specified.

Definition 3.1 A fuzzy set \(\lambda\) in \(X\) is called an \((\alpha, \beta)\)-fuzzy subalgebra of \(X\) if for all \(x, y \in X\) and \(t, r \in (0, \delta]\),

\[
x_t \alpha \lambda, \ y_r \alpha \lambda \Rightarrow (x * y)_{\min\{t,r\}}^\beta \lambda, \tag{1}
\]

where \(\alpha \in \{\in, q, q_0^\delta\}\) and \(\beta \in \{\in, q_0^\delta, \in \vee q_0^\delta\}\).
We say that $x_t \overline{\alpha} \lambda$ if $x_t \alpha \lambda$ does not hold.

Example 3.2 Let $X = \{0, a, b, c\}$ be a BCI-algebra in which the operation $*$ is described by Table 1.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Cayley table of the operation $*$

Define a fuzzy set λ in X as follows:

$$\lambda : X \rightarrow [0, 1], \quad x \mapsto \begin{cases} 0.45 & \text{if } x = 0, \\ 0.74 & \text{if } x = b, \\ 0.35 & \text{if } x \in \{a, c\}. \end{cases}$$

Then λ is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X with $\delta \in (0, 0.9]$. If $\delta \in (0.9, 1]$, then λ is not an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X.

It is obvious that if $\delta_1 \geq \delta_2$ in $(0, 1]$, then every $(\in, \in \vee q_0^{\delta_1})$-fuzzy subalgebra is an $(\in, \in \vee q_0^{\delta_2})$-fuzzy subalgebra, but the converse is not true as seen in Example 3.2.

Proposition 3.3 If λ is a nonzero (q_0^δ, \in) (or (q_0^δ, q_0^δ))-fuzzy subalgebra of X, then the set

$$X_0 := \{x \in X \mid \lambda(x) > 0\}$$

is a subalgebra of X.

Proof. Let $x, y \in X_0$. Then $\lambda(x) > 0$ and $\lambda(y) > 0$. Hence $\lambda(x) + \delta > \delta$ and $\lambda(y) + \delta > \delta$, that is, $x \delta q_0^\delta \lambda$ and $y \delta q_0^\delta \lambda$. It follows from (1) that $(x * y)_\delta \in \lambda$, i.e., $\lambda(x * y) \geq \delta > 0$. Thus $x * y \in X_0$. Thus X_0 is a subalgebra of X. For (q_0^δ, q_0^δ)-fuzzy subalgebra case, we can prove similarly.

Proposition 3.4 Let S be a subalgebra of X and let λ be a fuzzy set in X such that

(i) $\lambda(x) \geq \frac{\delta}{2}$ for all $x \in S$,

(ii) $\lambda(x) = 0$ for all $x \in X \setminus S$.
Then \(\lambda \) is a \((q_0^\delta, \in \lor q_0^\delta)\)-fuzzy subalgebra of \(X \).

Proof. Let \(x, y \in X \) and \(t_1, t_2 \in (0, \delta] \) such that \(x_{t_1} q_0^\delta \lambda \) and \(y_{t_2} q_0^\delta \lambda \). Then
\[
\lambda(x) + t_1 > \delta \quad \text{and} \quad \lambda(y) + t_2 > \delta,
\]
which imply that \(x, y \in S \). Hence \(x \ast y \in S \), and so
\[
\lambda(x \ast y) \geq \frac{\delta}{2}.
\]
If \(\min\{t_1, t_2\} > \frac{\delta}{2} \), then \(\lambda(x \ast y) + \min\{t_1, t_2\} > \delta \), i.e.,
\[
(x \ast y)_{\min\{t_1, t_2\}} q_0^\delta \lambda.
\]
If \(\min\{t_1, t_2\} \leq \frac{\delta}{2} \), then \(\lambda(x \ast y) \geq \frac{\delta}{2} \geq \min\{t_1, t_2\} \) and so
\[
(x \ast y)_{\min\{t_1, t_2\}} \in \lambda.
\]
Therefore \((x \ast y)_{\min\{t_1, t_2\}} \in \lor q_0^\delta \lambda \), and \(\lambda \) is a \((q_0^\delta, \in \lor q_0^\delta)\)-fuzzy subalgebra of \(X \).

Theorem 3.5 For any fuzzy set \(\lambda \) in \(X \), the following are equivalent.

(i) \(\lambda \) is an \((\in, \lor q_0^\delta)\)-fuzzy subalgebra of \(X \).

(ii) \((\forall x, y \in X) \left(\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y), \frac{\delta}{2}\} \right) \).

Proof. Assume that \(\lambda \) is an \((\in, \lor q_0^\delta)\)-fuzzy subalgebra of \(X \). For any \(x, y \in X \), we consider two cases:

1. \(\min\{\lambda(x), \lambda(y)\} < \frac{\delta}{2} \) and
2. \(\min\{\lambda(x), \lambda(y)\} \geq \frac{\delta}{2} \).

For the first case, suppose that
\[
\lambda(x \ast y) < \min\{\lambda(x), \lambda(y)\}
\]
and take \(t \in (0, \frac{\delta}{2}] \) such that
\[
\lambda(x \ast y) < t \leq \min\{\lambda(x), \lambda(y)\}.
\]
Then \(x_t \in \lambda \) and \(y_t \in \lambda \) but
\[
(x \ast y)_t = (x \ast y)_t \lor q_0^\delta \lambda
\]
since \((x \ast y)_t \in \lambda \) and \(\lambda(x \ast y) + t < 2t < \delta \),
that is, \((x \ast y)_t \lor q_0^\delta \lambda \). This is a contradiction. Hence \(\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y)\} \)
whenever \(\min\{\lambda(x), \lambda(y)\} < \frac{\delta}{2} \). Now assume that the case (2) is valid. Then
\[
x_{\frac{\delta}{2}} \in \lambda \quad \text{and} \quad y_{\frac{\delta}{2}} \in \lambda,
\]
which imply that
\[
(x \ast y)_{\frac{\delta}{2}} = (x \ast y)_{\min\{\frac{\delta}{2}, \frac{\delta}{2}\}} \lor q_0^\delta \lambda.
\]
If
\[
\lambda(x \ast y) < \frac{\delta}{2},
\]
then
\[
\lambda(x \ast y) + \frac{\delta}{2} < \frac{\delta}{2} + \frac{\delta}{2} = \delta
\]
and so \(\lambda(x \ast y) < \frac{\delta}{2} \) which shows that
\[
(x \ast y)_{\frac{\delta}{2}} \lor q_0^\delta \lambda
\]
This is a contradiction, and thus \(\lambda(x \ast y) \geq \frac{\delta}{2} \).

Therefore \(\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y), \frac{\delta}{2}\} \) for all \(x, y \in X \).

Conversely assume that (ii) is valid. Let \(x, y \in X \) and \(t, r \in (0, \delta] \) such that
\(x_t \in \lambda \) and \(y_r \in \lambda \). Then
\(\lambda(x) \geq t \) and \(\lambda(y) \geq r \). Suppose that
\(\lambda(x \ast y) < \min\{t, r\} \). If
\(\min\{\lambda(x), \lambda(y)\} < \frac{\delta}{2} \), then
\[
\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y), \frac{\delta}{2}\} \geq \min\{\lambda(x), \lambda(y)\} \geq \min\{t, r\},
\]
a contradiction. Hence \(\min\{\lambda(x), \lambda(y)\} \geq \frac{\delta}{2} \), and so
\[
\lambda(x \ast y) + \min\{t, r\} > 2\lambda(x \ast y) \geq 2\min\{\lambda(x), \lambda(y), \frac{\delta}{2}\} = \delta.
\]
This shows that
\((x \ast y)_{\min\{t, r\}} q_0^\delta \lambda \). Therefore \(\lambda \) is an \((\in, \lor q_0^\delta)\)-fuzzy subalgebra of \(X \).

Obviously, every \((\in, \lor)\)-fuzzy subalgebra is an \((\in, \lor q_0^\delta)\)-fuzzy subalgebra, but the converse is not true in general. In fact, the \((\in, \lor q_0^\delta)\)-fuzzy subalgebra \(\lambda \) with \(\delta \in (0, 0.9] \) in Example 3.2 is not an \((\in, \lor)\)-fuzzy subalgebra of \(X \) since
\(b_{0.6} \in \lambda \) and \(b_{0.7} \in \lambda \) but \((b \ast b)_{\min\{0.6, 0.7\}} = 0_{0.6} \).
Proposition 3.6 Let λ be an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X such that $\lambda(x) < \frac{\delta}{2}$ for all $x \in X$. Then λ is an (\in, \in)-fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $t, r \in (0, \delta]$ be such that $x_t \in \lambda$ and $y_r \in \lambda$. Then $\lambda(x) \geq t$ and $\lambda(y) \geq r$. It follows from the hypothesis and Theorem 3.5 that

$$
\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y), \frac{\delta}{2}\} = \min\{\lambda(x), \lambda(y)\} \geq \min\{t, r\}
$$

so that $(x \ast y)_{\min\{t, r\}} \in \lambda$. Hence λ is an (\in, \in)-fuzzy subalgebra of X.

For a subset S of X, a fuzzy set χ_S^δ in X defined by

$$
\chi_S^\delta : X \rightarrow [0, 1], \ x \mapsto \begin{cases}
\delta & \text{if } x \in S, \\
0 & \text{otherwise,}
\end{cases}
$$

is called a δ-characteristic fuzzy set of S in X (see [5]).

Theorem 3.7 For any subset S of X and the δ-characteristic fuzzy set χ_S^δ of S in X, the following are equivalent:

(i) S is a subalgebra of X.

(ii) χ_S^δ is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X.

Proof. (i) \Rightarrow (ii) is straightforward.

Assume that χ_S^δ is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X. Let $x, y \in S$. Then $\chi_S^\delta(x) = \delta = \chi_S^\delta(y)$, and so $x_{\delta} \in \chi_S^\delta$ and $y_{\delta} \in \chi_S^\delta$. It follows that $(x \ast y)_{\delta} = (x \ast y)_{\min\{t, r\}} \in \vee q_0^\delta \lambda$, which yields $\chi_S^\delta(x \ast y) > 0$. Hence $x \ast y \in S$ and S is a subalgebra of X.

Theorem 3.8 A fuzzy set λ in X is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X if and only if the set

$$
U(\lambda; t) := \{x \in X \mid \lambda(x) \geq t\}
$$

is a subalgebra of X for all $t \in (0, \frac{\delta}{2}]$.

Proof. Assume that λ is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X. Let $t \in (0, \frac{\delta}{2}]$ and $x, y \in U(\lambda; t)$. Then $\lambda(x) \geq t$ and $\lambda(y) \geq t$. It follows from Theorem 3.5 that

$$
\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y), \frac{\delta}{2}\} \geq \min\{t, \frac{\delta}{2}\} = t
$$

and so that $x \ast y \in U(\lambda; t)$. Therefore $U(\lambda; t)$ is a subalgebra of X.

Conversely, let λ be a fuzzy set in X such that $U(\lambda; t)$ is a subalgebra of X for all $t \in (0, \frac{\delta}{2}]$. Suppose that there are elements a and b of X such that
\[\lambda(a * b) < \min\{\lambda(a), \lambda(b), \frac{\delta}{2}\}, \]

and take \(t \in (0, \delta] \) such that \(\lambda(a * b) < t \leq \min\{\lambda(a), \lambda(b), \frac{\delta}{2}\} \). Then \(a, b \in U(\lambda; t) \) and \(t \leq \frac{\delta}{2} \), which implies that \(a * b \in U(\lambda; t) \) since \(U(\lambda; t) \) is a subalgebra of \(X \). This induces \(\lambda(a * b) \geq t \), and this is a contradiction. Hence \(\lambda(x * y) \geq \min\{\lambda(x), \lambda(y), \frac{\delta}{2}\} \) for all \(x, y \in X \), and therefore \(\lambda \) is an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra of \(X \) by Theorem 3.5.

We say that the subalgebra \(U(\lambda; t) \) in Theorem 3.8 is a level subalgebra of \(X \).

Theorem 3.9 Let \(\{\lambda_i \mid i \in \Lambda\} \) be a family of \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebras of \(X \). Then \(\lambda := \bigcap_{i \in \Lambda} \lambda_i \) is an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra of \(X \).

Proof. Suppose that \(x_i \in \lambda \) and \(y_i \in \lambda \) for all \(x, y \in X \) and \(t, r \in (0, \delta] \).

Assume that \((x * y)_{\min\{t, r\}} \in q_0^\delta \lambda \). Then \(\lambda(x * y) < \min\{t, r\} \) and \(\lambda(x * y) + \min\{t, r\} \leq \delta \), which imply that

\[\lambda(x * y) < \frac{\delta}{2} \]

(2)

Let \(\Omega_1 := \{i \in \Lambda \mid (x * y)_{\min\{t, r\}} \in \lambda_i\} \) and

\[\Omega_2 := \{i \in \Lambda \mid (x * y)_{\min\{t, r\}} q_0^\delta \lambda_i \} \cap \{j \in \Lambda \mid (x * y)_{\min\{t, r\}} \in \lambda_j\}. \]

Then \(\Lambda = \Omega_1 \cup \Omega_2 \) and \(\Omega_1 \cap \Omega_2 = \emptyset \). If \(\Omega_2 = \emptyset \), then \((x * y)_{\min\{t, r\}} \in \lambda_i \) for all \(i \in \Lambda \), that is, \(\lambda_i(x * y) \geq \min\{t, r\} \) for all \(i \in \Lambda \), which yields \(\lambda(x * y) \geq \min\{t, r\} \). This is a contradiction. Hence \(\Omega_2 \neq \emptyset \), and so for every \(i \in \Omega_2 \) we have \(\lambda_i(x * y) < \min\{t, r\} \) and \(\lambda_i(x * y) + \min\{t, r\} > \delta \). It follows that \(\min\{t, r\} > \frac{\delta}{2} \).

Now \(x_i \in \lambda \) implies \(\lambda_i(x) \geq t \) and thus \(\lambda_i(x) \geq \lambda(x) \geq t \geq \min\{t, r\} > \frac{\delta}{2} \) for all \(i \in \Lambda \). Similarly we get \(\lambda_i(y) > \frac{\delta}{2} \) for all \(i \in \Lambda \). Next suppose that \(t := \lambda_i(x * y) < \frac{\delta}{2} \).

Taking \(t < r < \frac{\delta}{2} \), we get \(x_i \in \lambda_i \) and \(y_i \in \lambda_i \), but \((x * y)_{\min\{t, r\}} = (x * y)_r \in q_0^\delta \lambda_i \). This contradicts that \(\lambda_i \) is an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra of \(X \). Hence \(\lambda_i(x * y) \geq \frac{\delta}{2} \) for all \(i \in \Lambda \), and so \(\lambda(x * y) \geq \frac{\delta}{2} \) which contradicts (2). Therefore \((x * y)_{\min\{t, r\}} \in q_0^\delta \lambda \) and consequently \(\lambda \) is an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra of \(X \).

The following example shows that the union of \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebras of \(X \) may not be an \((\in, \in \lor q_0^\delta)\)-fuzzy subalgebra of \(X \).

Example 3.10 Let \(X = \{0, 1, a, b\} \) be a BCI-algebra in which the operation \(* \) is described by Table 2.

Define fuzzy sets \(\lambda_1 \) and \(\lambda_2 \) in \(X_1 \) as follows:

\[
\lambda_1 : X \to [0, 1], \quad x \mapsto \begin{cases}
0.48 & \text{if } x \in \{0, 1\}, \\
0.20 & \text{if } x \in \{a, b\},
\end{cases}
\]

\[
\lambda_2 : X \to [0, 1], \quad x \mapsto \begin{cases}
0.50 & \text{if } x \in \{0, 1\}, \\
0.30 & \text{if } x \in \{a, b\},
\end{cases}
\]

\[
\lambda_1(x * y) = \min\{\lambda_1(x), \lambda_1(y), \frac{\delta}{2}\} = \min\{0.48, 0.50, \frac{\delta}{2}\} = \min\{0.48, \frac{\delta}{2}\} = \frac{\delta}{2} < \delta.
\]

This shows that \(\lambda_1 \) and \(\lambda_2 \) do not satisfy the condition for being a fuzzy subalgebra of \(X \).
Table 2: Cayley table of the operation \ast

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

and

$$\lambda_2 : X \to [0,1], \; x \mapsto \begin{cases}
0.5 & \text{if } x \in \{0,a\}, \\
0.3 & \text{if } x \in \{1,b\}.
\end{cases}$$

Then λ_1 and λ_2 are $(\in, \in \cup \triangledown q_0^{0.9})$-fuzzy subalgebras of X. The union $\lambda_1 \cup \lambda_2$ of λ_1 and λ_2 is described as follows:

$$\lambda_1 \cup \lambda_2 : X \to [0,1], \; x \mapsto \begin{cases}
0.5 & \text{if } x \in \{0,a\}, \\
0.48 & \text{if } x = 1, \\
0.3 & \text{if } x = b,
\end{cases}$$

and it is not an $(\in, \in \cup \triangledown q_0^{0.9})$-fuzzy subalgebra of X since

$$(\lambda_1 \cup \lambda_2)(1 \ast a) = (\lambda_1 \cup \lambda_2)(b) = 0.3 \not\geq 0.45 = \min\{(\lambda_1 \cup \lambda_2)(1), (\lambda_1 \cup \lambda_2)(a), 0.45\}.$$

Theorem 3.11 Let $\{\lambda_i \mid i \in \Lambda\}$ be a family of $(\in, \in \cup q_0^\delta)$-fuzzy subalgebras of X such that $\lambda_i \subseteq \lambda_j$ or $\lambda_j \subseteq \lambda_i$ for all $i, j \in \Lambda$ Then $\lambda := \bigcup_{i \in \Lambda} \lambda_i$ is an $(\in, \in \cup q_0^\delta)$-fuzzy subalgebra of X.

Proof. For all $x, y \in X$, we have

$$\lambda(x \ast y) = \left(\bigcup_{i \in \Lambda} \lambda_i\right)(x \ast y) \geq \bigvee_{i \in \Lambda} \lambda_i(x \ast y) \geq \bigvee_{i \in \Lambda} \min\{\lambda_i(x), \lambda_i(y), \frac{\delta}{2}\}$$

$$= \min\left\{\bigvee_{i \in \Lambda} \lambda_i(x), \bigvee_{i \in \Lambda} \lambda_i(y), \frac{\delta}{2}\right\} = \min\{\lambda(x), \lambda(y), \frac{\delta}{2}\}.$$

Therefore λ is an $(\in, \in \cup q_0^\delta)$-fuzzy subalgebra of X.

Definition 3.12 ([5]) Let λ be a fuzzy set in X and $t \in (0,1]$. Then the set

$$\Omega(\lambda; t) := \{x \in X \mid x \in \bigvee q_0^\delta \lambda\}$$

is called an $(\in \cup q_0^\delta)$-level set in X determined by λ and t.

Using Theorem 3.11, we can obtain the following theorem.

Theorem 3.13 A fuzzy set λ in X is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X if and only if the set $\Omega(\lambda; t)$ is a subalgebra of X for all $t \in (0, \delta]$.

Proof. We omit the proof.

Proposition 3.14 Let S be a subalgebra of X. For any $t \in (0, \frac{\delta}{2}]$, there exists an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra λ of X such that $U(\lambda; t) = S$.

Proof. Let λ be a fuzzy set in X defined by

$$\lambda(x) = \begin{cases} t & \text{if } x \in S, \\ 0 & \text{otherwise,} \end{cases}$$

for all $x \in X$ where $t \in (0, \frac{\delta}{2}]$. Obviously, $U(\lambda; t) = S$. Assume that there exist $a, b \in X$ such that $\lambda(a \ast b) < \min\{\lambda(a), \lambda(b), \frac{\delta}{2}\}$. Since $|\text{Im}(\lambda)| = 2$, it follows that $\lambda(a \ast b) = 0$ and $\min\{\lambda(a), \lambda(b), \frac{\delta}{2}\} = t$, and so $\lambda(a) = t = \lambda(b)$, so that $a, b \in S$ but $a \ast b \notin S$. This is a contradiction, and so $\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y), \frac{\delta}{2}\}$ for all $x, y \in X$. Using Theorem 3.5, we know that λ is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X.

Theorem 3.15 Let $f : X \to Y$ be a homomorphism of BCK/BCI-algebras and let λ and ν be $(\in, \in \vee q_0^\delta)$-fuzzy subalgebras of X and Y, respectively. Then

(i) $f^{-1}(\nu)$ is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X.

(ii) If, for any subset T of X, there exists $x_0 \in T$ such that

$$\lambda(x_0) = \bigvee\{\lambda(x) \mid x \in T\},$$

then $f(\lambda)$ is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of Y when f is onto.

Proof.

(i) Let $x, y \in X$ and $t, r \in (0, \delta]$ be such that $x_t \in f^{-1}(\nu)$ and $y_r \in f^{-1}(\nu)$. Then $(f(x))_t \in \nu$ and $(f(y))_r \in \nu$. Since ν is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of Y, it follows that

$$(f(x \ast y))_{\min\{t, r\}} = (f(x) \ast f(y))_{\min\{t, r\}} \in \bigvee q_0^\delta \nu$$

so that $(x \ast y)_{\min\{t, r\}} \in \bigvee q_0^\delta f^{-1}(\nu)$. Therefore $f^{-1}(\nu)$ is an $(\in, \in \vee q_0^\delta)$-fuzzy subalgebra of X.

(ii) Let $a, b \in Y$ and $t, r \in (0, \delta]$ be such that $a_t \in f(\lambda)$ and $b_r \in f(\lambda)$. Then $(f(\lambda))(a) \geq t$ and $(f(\lambda))(b) \geq r$. By assumption, there exists $x \in f^{-1}(a)$ and $y \in f^{-1}(b)$ such that

$$\lambda(x) = \bigvee\{\lambda(z) \mid z \in f^{-1}(a)\}$$

and

$$\lambda(y) = \bigvee\{\lambda(z) \mid z \in f^{-1}(b)\}.$$
and
\[\lambda(y) = \bigvee \{ \lambda(w) \mid w \in f^{-1}(b) \} . \]
Then \(x_t \in \lambda \) and \(y_r \in \lambda \). Since \(\lambda \) is an \((\in, \in \lor q^0)\)-fuzzy subalgebra of \(X \), we have \((x \ast y)_{\min\{t, r\}} \in \lor q^0 \lambda \). Now \(x \ast y \in f^{-1}(a \ast b) \) and so \((f(\lambda))(a \ast b) \geq \lambda(x \ast y) \).

Thus
\[(f(\lambda))(a \ast b) \geq \min\{t, r\} \text{ or } (f(\lambda))(a \ast b) + \min\{t, r\} > \delta \]
which means that \((a \ast b)_{\min\{t, r\}} \in \lor q^0 f(\lambda) \). Consequently, \(f(\lambda) \) is an \((\in, \in \lor q^0)\)-fuzzy subalgebra of \(Y \).

References

Received: October 31, 2015; Published: December 12, 2015