Restrained Total Edge Domination in Graphs

Mohammad Nur S. Paspasan

Department of Mathematics and Statistics
College of Science and Mathematics
Western Mindanao State University
San Jose Road, Zamboanga City 7000, Philippines

Sergio R. Canoy, Jr.

Department of Mathematics and Statistics
College of Science and Mathematics
Mindanao State University - Iligan Institute of Technology
A. Bonifacio Avenue, Tibanga, Iligan City 9200, Philippines

Copyright © 2015 Mohammad Nur S. Paspasan and Sergio R. Canoy, Jr. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $G = (V(G), E(G))$ be a connected graph. A subset D of $E(G)$ is called a restrained total edge dominating set of G if every edge in $E(G)$ is adjacent to an edge in D and every edge not in D is adjacent to another edge not in D. The restrained total edge domination number of G denoted by $\gamma_{rte}(G)$, is the minimum cardinality of a restrained total edge dominating set of G. Any restrained total edge dominating set of G with cardinality $\gamma_{rte}(G)$ is referred to as a γ_{rte}-set of G. In this paper, we investigate the concept of restrained total edge domination in a graph and obtain some results involving the concepts of edge domination, total edge domination and restrained total edge domination.

Mathematics Subject Classification: 05C69

Keywords: edge dominating set, total edge dominating set, restrained edge dominating set and restrained total edge dominating set

1This research is funded by the Commission on Higher Education - Faculty Development Program II (CHED - FDP II)
1 Introduction

Let $G = (V(G), E(G))$ be a graph. A graph G has an order $|V(G)| = n$ and size $|E(G)| = m$. The set of vertices in a graph G where no two of which are adjacent is called an independent set. For any vertex $v \in V(G)$, the open neighborhood of v, is defined by $N_G(v) = \{u \in V(G) | uv \in E(G)\}$ and the set $N_G[v] = N_G(v) \cup \{v\}$, is the closed neighborhood of v. If $S \subseteq V(G)$, then the open neighborhood of S is the set $N_G(S) = \bigcup_{v \in S} N_G(v)$. The closed neighborhood of S is $N_G[S] = N_G(S) \cup S$. A vertex $v \in V(G)$ of degree 1 is called a leaf or end-vertex. The vertex $u \in V(G)$ such that $v \in N_G(u)$, where v is a leaf, is called a support vertex or stem. A subset S of $V(G)$ is a dominating set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that $uv \in E(G)$, that is, $N_G[S] = V(G)$. The domination number of G denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. Any dominating set of G with cardinality $\gamma(G)$ is referred to as a γ-set of G.

If $e = uv$ is an edge of a graph G, then e is incident with vertices u and v. In this case, we also say that u and v are incident with e. Two edges e_1 and e_2 which are incident with a common vertex v are said to be adjacent edges. If D is a set of edges in G, then the set $V_D \subseteq V(G)$ is given by $V_D = \{v \in V(G) | uv \in D \text{ for some } u \in V(G)\}$. The subgraph G_D of G generated by $D \subseteq E(G)$ is defined by $G_D = (V_D, D)$. A subset D of $E(G)$ is an edge dominating set of G if every edge not in D is adjacent to some edge in D. The edge domination number of G denoted by $\gamma_e(G)$, is the minimum cardinality of an edge dominating set of G. Any edge dominating set of G with cardinality $\gamma_e(G)$ is referred to as a γ_e-set of G. The concept of edge domination was introduced by Mitchell and Hedetniemi [6] in 1977 and studied in [1, 3, 4, 5, 8, 10].

Arunagam and Velammal [2] initiated the study of total edge domination in graphs in 1997. A subset D of $E(G)$ is a total edge dominating set of G if every edge in $E(G)$ is adjacent to an edge in D. The total edge domination number of G denoted by $\gamma_{te}(G)$, is the minimum cardinality of a total edge dominating set of G. Any total edge dominating set of G with cardinality $\gamma_{te}(G)$ is referred to as a γ_{te}-set of G. Other studies concerning the concept of total edge domination, with some variations are investigated in [7, 9]. A subset D of $E(G)$ is a restrained edge dominating set of G if every edge not in D is adjacent to an edge in D and to another edge not in D. The restrained edge domination number of G denoted by $\gamma_{re}(G)$, is the minimum cardinality of a restrained edge dominating set of G. Any restrained edge dominating set of G with cardinality $\gamma_{re}(G)$ is referred to as a γ_{re}-set of G. A subset D of $E(G)$ is called a restrained total edge dominating set of G if every edge in $E(G)$ is adjacent to an edge in D and every edge not in D is adjacent to another edge not in D. The restrained total edge domination number of G denoted by
\(\gamma_{rte}(G)\), is the minimum cardinality of a restrained total edge dominating set of \(G\). Moreover, any restrained total edge dominating set of \(G\) with cardinality \(\gamma_{rte}(G)\) is referred to as a \(\gamma_{rte}\)-set of \(G\).

2 Restrained Total Edge Domination Numbers of Some Graphs

Remark 2.1 An edge dominating set \(D\) of \(G\) is a restrained edge dominating set of \(G\) if \(D = E(G)\) or \(G_{E(G)\setminus D}\) has no component isomorphic to \(K_2\).

Remark 2.2 Every restrained total edge dominating set of a connected graph \(G\) is a total edge dominating set of \(G\).

Remark 2.3 Let \(G\) be a graph having no component isomorphic to \(K_2\). Then \(G\) has a restrained total edge dominating set \(D\).

Remark 2.4 Let \(G\) be a connected graph. If \(D\) is a restrained total edge dominating set of \(G\), then \(|D| \geq 2\). Hence, \(\gamma_{rte}(G) \geq 2\).

Remark 2.5 For a connected graph \(G\) of order \(n \geq 3\), we have

\[2 \leq \gamma_{te}(G) \leq \gamma_{rte}(G) \leq n.\]

Remark 2.6 Let \(G\) be a graph and let \(D\) be a restrained total edge dominating set of \(G\). If \(v\) is the only leaf connected to a support vertex \(u\), then \(e = uv \in D\).

Theorem 2.7 Let \(a\) and \(k\) be positive integers such that \(2 \leq a \leq \left\lceil \frac{k}{2} \right\rceil\). Then there exists a connected graph \(G\) such that \(|E(G)| = k\) and \(\gamma_{rte}(G) = a\).

Proof: Consider the following cases:

Case 1: \(a\) is even

Let \(a = 2n\), where \(n \geq 1\). Let \(H\) be the union of \(n\) copies of \(P_3\) (\(H\) consists of \(n\) components each isomorphic to \(P_3\)). Set \(m = k - 2a + 2 \geq 2\) and let \(C = \{(x_i, y_i, z_i) | i = 1, 2, ..., n\}\) be a component of \(H\). Let \(G\) be the graph obtained from \(H\) by adding the edges \(z_1w_1, x_2w_1, z_2w_2, x_3w_2, ...,\) and \(z_{n-1}w_{n-1}, x_nw_{n-1}\) and \(z_nv_1, z_nv_2, ...,\) and \(z_nv_m\) (see Figure 1). The set \(S = \{x_1y_1, y_1z_1\} \cup \{x_2y_2, y_2z_2\} \cup ... \cup \{x_{n-1}y_{n-1}, y_{n-1}z_{n-1}\} \cup \{x_ny_n, y_nz_n\} = \cup \{x_iy_i, y_iz_i | i = 1, 2, ..., n\}\) is a \(\gamma_{rte}\)-set of \(G\) by Remark 2.6. Hence, \(\gamma_{rte}(G) = |S| = 2n = a\). Also, \(|E(G)| = 2n + 2(n - 1) + m = 2a - 2 + k - 2a + 2 = k\).
Case 2: a is odd

Let $a = 2n+1$, where $n \geq 1$. Let H_1 be the union of n copies of P_3 and a copy of P_4. Again, let $m = k - 2a + 3 \geq 2$ and let $C = \{(x_i, y_i, z_i, \bar{w}) | i = 1, 2, \ldots, n\}$ be a component of H_1. Let G be the graph obtained from H_1 by adding the edges $z_1w_1, x_2w_1, z_2w_2, x_3w_2, \ldots$, and $z_{n-1}w_{n-1}, x_nw_{n-1}$ and $\bar{w}v_1, \bar{w}v_2, \ldots$, and $\bar{w}v_m$ (see Figure 2). The set $S = \{x_1y_1, y_1z_1\} \cup \{x_2y_2, y_2z_2\} \cup \ldots \cup \{x_{n-1}y_{n-1}, y_{n-1}z_{n-1}\} \cup \{x_ny_n, y_nz_n, z_n\}$ is a γ_{te}-set of G by Remark 2.6. Hence, $\gamma_{te}(G) = |S| = 2n + 1 = a$. Also, $|E(G)| = 2(n - 1) + 2(n - 1) + 3 + m = 4n - 1 + k - 2a + 3 = 2(2n + 1) + k - 2a = 2a + k - 2a = k$.

This proves the assertion. \blacksquare

Theorem 2.8 Let G be a graph without isolated vertices. A subset D of $E(G)$ is an edge dominating set of G if and only if $V(G) \setminus V_D$ is an independent set.

Proof: Suppose D is an edge dominating set of G. Let $x, y \in V(G) \setminus V_D$ such that $x \neq y$. Then $xy \notin E(G)$ (otherwise, $e = xy$ is not dominated by D). Thus, $V(G) \setminus V_D$ is an independent set of G.

Conversely, suppose that $V(G) \setminus V_D$ is an independent set of G. Let $e = uv \in E(G) \setminus D$. Then $u \in V_D$ or $v \in V_D$ (but not both). Assume that $u \in V_D$. Then $v \in V(G) \setminus V_D$ and there exists $w \in V_D$ such that $uw \in D$. Thus, $e = uw$ is adjacent to uv. This implies that D is an edge dominating set of G. \blacksquare

Theorem 2.9 Let G be a connected graph of order $n \geq 3$. Then $\gamma_{te}(G) = 2$ if and only if there exist distinct vertices x, y and z of G such that $\langle\{x, y, z\}\rangle \cong P_3$ or K_3 and $V(G) \setminus S$ is an independent set.

Proof: Suppose $\gamma_{te}(G) = 2$. Let $D = \{e_1, e_2\}$ be a γ_{te}-set of G. Since D is a total edge dominating set of G, $|V_D| = 3$. Let $S = V_D = \{x, y, z\}$. Then $\langle S \rangle \cong P_3$ or K_3. Also, $V(G) \setminus S$ is an independent set by Theorem 2.8.

For the converse, suppose that there exist distinct vertices x, y and z of G such that $\langle\{x, y, z\}\rangle \cong P_3$ or K_3 and $V(G) \setminus S$ is an independent set. Assume
that $e_1 = xy, e_2 = yz \in E(G)$ and let $D = \{xy, yz\}$. Then D is an edge dominating set of G by Theorem 2.8. Moreover, since e_1 and e_2 are adjacent edges, D is a total edge dominating set of G. Therefore, $\gamma_{te}(G) = |D| = 2$. □

Theorem 2.10 Let G be a connected graph of order $n \geq 3$. Then $\gamma_{rte}(G) = 2$ if and only if $G \neq K_3$ and there exists $S \subseteq V(G)$ with $|S| = 3$ satisfying the following conditions:

(i) $\langle S \rangle \cong P_3$ or K_3;

(ii) $V(G) \setminus S$ is an independent set of G;

(iii) If $\langle S \rangle \cong P_3$ and if $w \in S$ is a support vertex to some vertex $u \in V(G) \setminus S$, then $|N_G(w) \cap (V(G) \setminus S)| \geq 2$; and

(iv) If $\langle S \rangle \cong K_3$ and every element of S is a support vertex, then there exists $w \in S$ such that $|N_G(w) \cap (V(G) \setminus S)| \geq 2$.

Proof: Suppose $\gamma_{rte}(G) = 2$. Then $G \neq K_3$ and $\gamma_{te}(G) = 2$ by Remark 2.5. Hence, by Theorem 2.9, conditions (i) and (ii) hold. Let $D = \{e_1, e_2\}$ be a restrained total edge dominating set of G with $V_D = S$. Suppose $\langle S \rangle \cong P_3$ and $w \in S$ is a support vertex to some $u \in V(G) \setminus S$. Then $uw \notin D$. Since D is a restrained total edge dominating set of G, there exists $ab \notin D$ which is adjacent to uw. This implies that either u or w is incident to ab. Since u is a leaf, w must be incident to ab. Assume that $a = w$. Then $b \in V(G) \setminus S$. Hence, $u, b \in V(G) \setminus S$, showing that $|N_G(w) \cap (V(G) \setminus S)| \geq 2$. Thus, (iii) holds. Suppose $\langle S \rangle \cong K_3$. Suppose that every element of S is a support vertex. Suppose further that $|N_G(w) \cap (V(G) \setminus S)| = 1$, for all $w \in S$. Assume that $q \in S$ is the vertex incident to both e_1 and e_2. Let $p \in V(G) \setminus S$ such that $pq \in E(G)$. Then $\{e_1, e_2\}$ cannot be a restrained total edge dominating set of G because pq is not adjacent to any edge in $\langle E(G) \setminus D \rangle$, contrary to our assumption. Thus, there exists $w \in S$ such that $|N_G(w) \cap (V(G) \setminus S)| \geq 2$, showing that (iv) holds.

For the converse, suppose that $G \neq K_3$ and there exists $S \subseteq V(G)$ with $|S| = 3$ satisfying (i), (ii), (iii) and (iv). Suppose first that $\langle S \rangle \cong P_3$, say $\langle S \rangle = \{x, y, z\}$. Let $D = \{xy, yz\}$. Since $V(G) \setminus V_D = V(G) \setminus S$ is an independent set, D is a total edge dominating set of G by Theorem 2.8. Let $ab \in E(G) \setminus D$.

![Figure 2](image-url)
Then \(a \in V(G) \setminus S \) or \(b \in V(G) \setminus S \) (but not both). Assume that \(a \in V(G) \setminus S \). Then \(b \in S \). If \(a \) is not a leaf, then \(ac \in E(G) \) for some \(c \in S \setminus \{b\} \). Clearly, \(ac \in E(G) \setminus D \) and \(ac \) is adjacent to \(ab \). Suppose \(a \) is a leaf. Then \(b \in S \) is a support vertex. Hence, by (iii), there exists \(d \in (V(G) \setminus S) \cap N_G(b) \). Thus, \(bd \in E(G) \setminus D \) and is adjacent to \(ab \). This shows that \(D \) is a restrained total edge dominating set of \(G \).

Finally, suppose that \(\langle S \rangle \cong K_3 \), where \(S = \{x, y, z\} \). Suppose that one of \(x, y \) and \(z \), say \(x \), is not a support vertex. Let \(D = \{xy, xz\} \). Then \(D \) is a total edge dominating set of \(G \). Let \(e = uv \in E(G) \setminus D \). Assume that \(u \in V(G) \setminus S \) and \(v \in S = V_D \). Suppose first that \(v = x \). Since \(x \) is not a support vertex (that is, \(u \) is not a leaf), there exists \(q \in (S \setminus \{x\}) \cap N_G(u) \). Thus, \(uv \in E(G) \setminus D \) and is adjacent to \(uv \). Suppose \(v \neq x \). Then \(uv \) is adjacent to \(yz \in E(G) \setminus D \). Hence, \(D \) is a restrained total edge dominating set of \(G \). Suppose now that \(x, y \) and \(z \) are support vertices. Then by (iv), one of them, say \(x \), satisfies \(|N_G(x) \cap (V(G) \setminus S)| \geq 2 \). Let \(D_1 = \{xy, yz\} \). Then \(D_1 \) is a restrained total edge dominating set of \(G \). Accordingly, \(\gamma_{rte}(G) = 2 \).

Clearly, \(\gamma_{rte}(K_{1,3}) = 3 \). Also, by Theorem 2.10, \(\gamma_{rte}(K_{1,n-1}) = 2 \) for \(n \in \{3, 5, 6, \ldots\} \). The next result summarizes these facts.

Corollary 2.11 Let \(n \geq 3 \). Then

\[
\gamma_{rte}(K_{1,n-1}) = \begin{cases}
3, & n = 4 \\
2, & n \neq 4
\end{cases}
\]

Lemma 2.12 Let \(n \) be an integer with \(n \geq 2 \). Then \(D \subseteq E(G) \) is a restrained edge dominating set of \(K_n \) if and only if \(|V(K_n) \setminus V_D| \leq 1 \) and \(D = E(G) \) or \(G_{E(G),D} \) has no component isomorphic to \(K_2 \).

Proof: Suppose that \(D \) is a restrained edge dominating set of \(K_n \). Suppose further that \(|V(K_n) \setminus V_D| \geq 2 \), say \(x, y \in V(K_n) \setminus V_D \). Then \(xy \) is not dominated by \(D \), contrary to the assumption that \(D \) is a restrained edge dominating set of \(K_n \). Thus, \(|V(K_n) \setminus V_D| \leq 1 \). Also, \(D = E(G) \) or \(G_{E(G),D} \) has no component isomorphic to \(K_2 \) by Remark 2.1.

Conversely, suppose that \(|V(K_n) \setminus V_D| \leq 1 \) and \(D = E(G) \) or \(G_{E(G),D} \) has no component isomorphic to \(K_2 \). Let \(e = xy \in E(G) \setminus D \). Then \(G \neq K_2 \); hence \(n \geq 3 \). If one of \(x \) and \(y \), say \(x \), is not in \(V_D \), then \(V(G) \setminus \{x\} \subseteq V_D \). Hence, there exists \(z \in V(G) \setminus \{x, y\} \) such that \(e' = yz \in D \). Clearly, \(e \) and \(e' \) are adjacent. If \(x, y \in V_D \), then \(e \) is dominated by \(D \). Hence, \(D \) is a restrained edge dominating set of \(G = K_n \).

Theorem 2.13 Let \(n \) be a positive integer with \(n \geq 3 \). Then

\[
\gamma_{rte}(K_n) = \begin{cases}
3, & n = 3 \\
 n - \left\lceil \frac{n}{3} \right\rceil, & n \geq 4
\end{cases}
\]
Proof: If \(n = 3 \), then \(\gamma_{rte}(K_3) = 3 \). Suppose that \(n \geq 4 \) and let \(V(K_n) = \{v_1, v_2, \ldots, v_n\} \). Consider the edges \(e_1 = v_1v_2 \) and \(e_2 = v_2v_3 \). Then the edges of \(K_n \) not dominated by \(e_1 \) and \(e_2 \) are exactly the edges of \(\{v_4, v_5, \ldots, v_{n-1}, v_n\} \) \(\equiv K_{n-3} \). Consider the edges \(e_3 = v_4v_5 \) and \(e_4 = v_5v_6 \). Then the edges of \(K_n \) not dominated by \(e_1, e_2, e_3 \) and \(e_4 \) are the edges of \(\{v_7, v_8, \ldots, v_{n-1}, v_n\} \) \(\equiv K_{n-6} \). Continuing in this manner, we obtain a set of edges \(e_1, e_2, \ldots, e_k \) that either dominates the edges of \(K_n \) or does not dominate the single edge \(v_{n-1}v_n \). By our choice of the edges (minimizing the number of edges not dominated in each stage), it follows that \(D = \{e_1, e_2, \ldots, e_k\} \) or \(D' = \{e_1, e_2, \ldots, e_k, v_{n-1}v_n\} \) is a \(\gamma_{rte} \)-set of \(G = K_n \). Consider the following cases:

Case 1: \(D = \{e_1, e_2, \ldots, e_k\} \) is a \(\gamma_{rte} \)-set of \(K_n \)
By Lemma 2.12, \(|V(K_n)\setminus V_D| \leq 1 \). Suppose that \(|V(K_n)\setminus V_D| = 0 \), that is, \(V_D = V(K_n) \). Then \(n \equiv 0 \) mod \((3) \), that is, \(n = 3t \) for some positive integer \(t \). It follows that \(|D| = k = 2t = 3t - t = n - \left\lceil \frac{n}{3} \right\rceil \). Thus, \(\gamma_{rte}(K_n) = n - \left\lceil \frac{n}{3} \right\rceil \).

Suppose that \(|V(K_n)\setminus V_D| = 1 \). Then \(n \equiv 1 \) mod \((3) \), that is, \(n = 3t + 1 \) for some non-negative integer \(t \). Thus, \(|D| = k = 2t = n - \left\lceil \frac{n}{3} \right\rceil \). Hence, \(\gamma_{rte}(K_n) = n - \left\lceil \frac{n}{3} \right\rceil \).

Case 2: \(D' = \{e_1, e_2, \ldots, e_k, v_{n-1}v_n\} \) is a \(\gamma_{rte} \)-set of \(K_n \)
Then \(D = \{e_1, e_2, \ldots, e_k\} \) does not dominate the single edge \(v_{n-1}v_n \). This implies that \(n \equiv 2 \) mod \((3) \), that is, \(n = 3t + 2 \) for some positive integer \(t \). It follows that \(|D'| = k + 1 = 2t + 1 = n - \left\lceil \frac{n}{3} \right\rceil \). Thus, \(\gamma_{rte}(K_n) = n - \left\lceil \frac{n}{3} \right\rceil \). \hspace{1cm} \(\blacksquare \)

Theorem 2.14 For any path \(P_n \) with \(n \geq 3 \) vertices,

\[
\gamma_{rte}(P_n) = (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor.
\]

Proof: Let \(D \) be a \(\gamma_{rte} \)-set of \(P_n \) and let \(E(P_n) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n\} \). Note that \(v_1v_2, v_2v_3, v_{n-2}v_{n-1}, v_{n-1}v_n \in D \) and any non-trivial component of \(G_{E(P_n)\setminus D} \) is of size exactly two. Suppose there are \(k \) non-trivial components in \(G_{E(P_n)\setminus D} \). Then \(2k + 2(k + 1) \leq n - 1 \), that is, \(k \leq \frac{n - 3}{4} \). Thus, \(|D| = (n - 1) - 2k \geq (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor \). Hence, \(\gamma_{rte}(P_n) \geq (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor \).

Next, consider the following cases:

Case 1: \(n - 3 \equiv 0 \) mod \((4) \)
Then \(n - 3 = 4t \) for some non-negative integer \(t \). Now, the set \(\{v_{4i+1}v_{4i+2}, v_{4i+2}v_{4i+3} | i = 0, 1, 2, \ldots, t - 1\} \cup \{v_{4t+1}v_{4t+2}, v_{4t+2}v_{4t+3}\} \) is a restrained total edge dominating set of \(P_n \) with cardinality \((n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor = 2t + 1 \). Hence, \(\gamma_{rte}(P_n) \leq (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor \), showing that \(\gamma_{rte}(P_n) = (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor \).

Case 2: \(n - 3 \equiv 1 \) mod \((4) \)
Then \(n - 3 = 4t + 1 \) for some positive integer \(t \) and \((n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor = 2t + 3 \). The set \(\{v_{4i+1}v_{4i+2}, v_{4i+2}v_{4i+3} | i = 0, 1, 2, \ldots, t - 1\} \cup \{v_{4t+1}v_{4t+2}, v_{4t+2}v_{4t+3}, v_{4t+3}v_{4t+4}\} \)
is a restrained total edge dominating set of P_n with cardinality $2t + 3$. Thus,
\[\gamma_{rte}(P_n) \leq (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor. \] Therefore,
\[\gamma_{rte}(P_n) = (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor. \]

Case 3: $n - 3 \equiv 2 \text{mod}(4)$

Then $n - 3 = 4t + 2$ for some positive integer t and $(n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor = 2(t + 2)$. The set
\[\{v_{4i+1}v_{4i+2}, v_{4i+2}v_{4i+3} \mid i = 0, 1, 2, ..., t - 1\} \]
\[\cup \{v_{4t+1}v_{4t+2}, v_{4t+2}v_{4t+3}, v_{4t+3}v_{4t+4}, v_{4t+4}v_{4t+5}\} \]
is a restrained total edge dominating set of P_n with cardinality $2(t + 2)$ and so
\[\gamma_{rte}(P_n) \leq (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor. \] Hence,
\[\gamma_{rte}(P_n) = (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor. \]

Case 4: $n - 3 \equiv 3 \text{mod}(4)$

Then $n - 3 = 4t + 3$ for some positive integer t and $(n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor = 2t + 5$. Since
\[\{v_{4i+1}v_{4i+2}, v_{4i+2}v_{4i+3} \mid i = 0, 1, 2, ..., t - 1\} \]
\[\cup \{v_{4t+1}v_{4t+2}, v_{4t+2}v_{4t+3}, v_{4t+3}v_{4t+4}, v_{4t+4}v_{4t+5}, v_{4t+5}v_{4t+6}\} \]
is a restrained total edge dominating set of P_n with cardinality $2t + 5$,
\[\gamma_{rte}(P_n) \leq (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor. \] Hence,
\[\gamma_{rte}(P_n) = (n - 1) - 2 \left\lfloor \frac{n - 3}{4} \right\rfloor. \]

\[\Box \]

Theorem 2.15 For any cycle C_n with $n \geq 3$ vertices,
\[\gamma_{rte}(C_n) = n - 2 \left\lfloor \frac{n}{4} \right\rfloor. \]

Proof: Let D be a γ_{rte}-set of C_n and let $E(C_n) = \{v_1v_2, v_2v_3, ..., v_{n-1}v_n, v_nv_1\}$. Note that $v_1v_2, v_2v_3 \in D$ and any non-trivial component of $G_{E(C_n) \setminus D}$ is of size exactly two. Suppose there are k non-trivial components in $G_{E(C_n) \setminus D}$. Then $2(2k) \leq n$, that is, $k \leq \frac{n}{4}$. Thus, $|D| = n - 2k \geq n - 2 \left\lfloor \frac{n}{4} \right\rfloor$. Hence,
\[\gamma_{rte}(C_n) \geq n - 2 \left\lfloor \frac{n}{4} \right\rfloor. \]

Next, consider the following cases:

Case 1: $n \equiv 0 \text{mod}(4)$

Then $n = 4t$ for some positive integer t and $n - 2 \left\lfloor \frac{n}{4} \right\rfloor = n - 2t = 2t$. Clearly, the set
\[\{v_{4i+1}v_{4i+2}, v_{4i+2}v_{4i+3} \mid i = 0, 1, 2, ..., t\} \]
is a restrained total edge dominating set of C_n with cardinality $2t = n - 2 \left\lfloor \frac{n}{4} \right\rfloor$. Consequently,
\[\gamma_{rte}(C_n) \leq n - 2 \left\lfloor \frac{n}{4} \right\rfloor. \] Hence,
\[\gamma_{rte}(C_n) = n - 2 \left\lfloor \frac{n}{4} \right\rfloor. \]

Case 2: $n \equiv 1 \text{mod}(4)$

Then $n = 4t + 1$ for some positive integer t and $n - 2 \left\lfloor \frac{n}{4} \right\rfloor = n - 2t = 2t + 1$. Since the set
\[\{v_{4i+1}v_{4i+2}, v_{4i+2}v_{4i+3} \mid i = 0, 1, 2, ..., t - 1\} \cup \{v_{4t+1}v_1\} \]
is a restrained total edge dominating set of C_n with cardinality $2t + 1 = n - 2 \left\lfloor \frac{n}{4} \right\rfloor$,
\[\gamma_{rte}(C_n) \leq n - 2 \left\lfloor \frac{n}{4} \right\rfloor. \] Hence,
\[\gamma_{rte}(C_n) = n - 2 \left\lfloor \frac{n}{4} \right\rfloor. \]
Case 3: $n \equiv 2 \pmod{4}$
Then $n = 4t+2$ for some positive integer t and $n-2 \left\lfloor \frac{n}{4} \right\rfloor = n-2t = 2(t+1)$. Since \(\{v_{4i+1}v_{4i+2}, v_{4i+2}v_{4i+3} | i = 0, 1, 2, \ldots, t-1\} \cup \{v_{4t+1}v_{4t+2}, v_{4t+2}v_1\} \) is a restrained total edge dominating set of C_n with cardinality $2(t+1) = n-2 \left\lfloor \frac{n}{4} \right\rfloor$, \(\gamma_{rte}(C_n) \leq n-2 \left\lfloor \frac{n}{4} \right\rfloor \). Hence, \(\gamma_{rte}(C_n) = n-2 \left\lfloor \frac{n}{4} \right\rfloor \).

Case 4: $n \equiv 3 \pmod{4}$
Then $n = 4t+3$ for some non-negative integer t and $n-2 \left\lfloor \frac{n}{4} \right\rfloor = n-2t = 2t+3$. Since \(\{v_{4i+1}v_{4i+2}, v_{4i+2}v_{4i+3} | i = 0, 1, 2, \ldots, t-1\} \cup \{v_{4t+1}v_{4t+2}, v_{4t+2}v_{4t+3}, v_{4t+3}v_1\} \) is a restrained total edge dominating set of C_n with cardinality $2t+3 = n-2 \left\lfloor \frac{n}{4} \right\rfloor$, \(\gamma_{rte}(C_n) \leq n-2 \left\lfloor \frac{n}{4} \right\rfloor \). Hence, \(\gamma_{rte}(C_n) = n-2 \left\lfloor \frac{n}{4} \right\rfloor \). ■

References

http://dx.doi.org/10.1137/0138030

Received: October 19, 2015; Published: December 12, 2015