Clique Domination in a Graph*

Teffany V. Daniel
Mathematics Department
College of Arts and Sciences
Bukidnon State University
Fortich St., Malaybalay City 8700, Philippines

Sergio R. Canoy, Jr.
Department of Mathematics and Statistics
College of Science and Mathematics
Mindanao State University-Iligan Institute of Technology
A. Bonifacio Ave., Tibanga, Iligan City 9200

Copyright © 2015 Teffany V. Daniel and Sergio R. Canoy, Jr. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let G be a nontrivial connected graph. A nonempty subset S of $V(G)$ is a clique dominating set of G if S is a dominating set and the induced subgraph $\langle S \rangle$ of S is complete. The minimum cardinality among all clique dominating sets of G, denoted by $\gamma_{cl}(G)$, is called the clique domination number of G. A clique dominating set S of G with $|S| = \gamma_{cl}(G)$ is called a γ_{cl}-set of G.

This study aims to characterize the clique dominating sets in the join, corona, composition and cartesian product of graphs and determine the corresponding clique domination number of the resulting graph.

Mathematics Subject Classification: 05C69

Keywords: clique domination, total domination, join, composition, corona, cartesian product

*This research is funded by the DOST-ASTHRDP-NSC-SRSF, Philippines.
1 Introduction

Let \(G = (V(G), E(G)) \) be a graph with \(n = |V(G)| \) and \(m = |E(G)| \). For any vertex \(v \in V(G) \), we define the open neighborhood of \(v \) as the set \(N_G(v) = \{u \in V(G) : uv \in E(G)\} \) and the closed neighborhood of \(v \) as the set \(N_G[v] = N_G(v) \cup \{v\} \). If \(S \) is a nonempty subset of \(X \), then \(N_G(S) = \bigcup_{v \in S} N_G(v) \) and \(N_G[S] = N_G(S) \cup S \). A nonempty subset \(S \) of \(V(G) \) is a dominating set of \(G \) if for every \(v \in V(G) \setminus S \), there exists \(u \in S \) such that \(uv \in E(G) \), that is \(N_G[S] = V(G) \). The domination number of \(G \), denoted by \(\gamma(G) \), is the minimum cardinality among all dominating sets of \(G \). A dominating set \(S \) of \(G \) with \(|S| = \gamma(G) \) is called a \(\gamma \)-set of \(G \).

Let \(G \) be a nontrivial connected graph. A dominating set \(S \) of \(V(G) \) is a clique dominating set of \(G \) if the induced subgraph \(\langle S \rangle \) of \(S \) is complete. The minimum cardinality of a clique dominating set of \(G \), denoted by \(\gamma_cl(G) \), is called the clique domination number of \(G \). A clique dominating set of \(G \) with cardinality \(\gamma_cl(G) \) is called a \(\gamma_cl(G) \)-set of \(G \).

The concept of clique domination was first studied by Cozzens and Kelleher in [1]. Total domination was investigated in [2]. Domination and other variations of domination can be found in [3] and [4].

2 Results

The following are results characterizing the clique dominating sets in the join, corona, composition and cartesian product of graphs.

Remark 2.1 Let \(G \) be a connected graph. Then \(\gamma_cl(G) = 1 \) if and only if \(\gamma(G) = 1 \).

Theorem 2.2 Let \(G \) be a connected graph of order \(n \geq 4 \). Then \(\gamma_cl(G) = 2 \) if and only if \(\gamma_t(G) = 2 \) and \(\gamma(G) \neq 1 \).

Proof: Suppose \(\gamma_cl(G) = 2 \), say \(S = \{x, y\} \) is a clique dominating set of \(G \). Then \(S \) is a total dominating set of \(G \). Hence \(\gamma_t(G) = |S| = 2 \). By Remark 2.1, \(\gamma(G) \neq 1 \).

Conversely, suppose that \(\gamma_t(G) = 2 \) and \(\gamma(G) \neq 1 \). Let \(S_1 = \{a, b\} \) be a total dominating set of \(G \). Then \(S_1 \) is a clique dominating set of \(G \). Hence \(\gamma_cl(G) \leq |S_1| = 2 \). Since \(\gamma(G) \neq 1 \), \(\gamma_cl(G) \neq 1 \) by Remark 2.1. This proves that \(\gamma_cl(G) = 2 \). \(\Box \)

The join of two graphs \(G \) and \(H \), denoted by \(G + H \), is the graph with vertex-set \(V(G + H) = V(G) \cup V(H) \) and edge-set

\[
E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}.
\]
Theorem 2.3 Let G and H be any two graphs. A subset S of $V(G + H)$ is a clique dominating set of $G + H$ if and only if one of the following statements holds:

(i) S is a clique dominating set of G.

(ii) S is a clique dominating set of H.

(iii) $S = S_1 \cup S_2$, where $\langle S_1 \rangle$ and $\langle S_2 \rangle$ are cliques in G and H, respectively.

Proof: Suppose that S is a clique dominating set of $G + H$. If $S \cap V(H) = \emptyset$, then $S \subseteq V(G)$ and S is a clique dominating set of G. Similarly, if $S \subseteq V(H)$, then S is a clique dominating set of H. Suppose $S_1 = S \cap V(G) \neq \emptyset$ and $S_2 = S \cap V(H) \neq \emptyset$. Since $\langle S \rangle$ is a clique in $G + H$, it follows that $\langle S_1 \rangle$ and $\langle S_2 \rangle$ are cliques in G and H, respectively.

The converse is straightforward. □

Corollary 2.4 Let G and H be nontrivial graphs. Then

$$
\gamma_{ct}(G + H) = \begin{cases}
1, & \text{if } \gamma(G) = 1 \text{ or } \gamma(H) = 1 \\
2, & \text{otherwise.}
\end{cases}
$$

Let G and H be graphs of orders n and m, respectively. The corona $G \circ H$ of G and H is the graph obtained by taking one copy of G and n copies of H, and then joining the ith vertex of G to every vertex of the ith copy of H. For every $v \in V(G)$, denote by H^v the copy of H whose vertices are attached one by one to the vertex v. Denote by $v + H^v$ the subgraph of the corona $G \circ H$ corresponding to the join $\langle \{v\} \rangle + H^v$.

The following discussion leads to the characterization of the clique dominating set in the corona of graphs.

Consider the corona of graphs G and H as shown below.

![Figure 1: $G \circ H$ without clique dominating set](image)
Observe that even if G and H have clique dominating sets, $G \circ H$ may not have any clique dominating set. On the other hand, if G is complete, that is, $G = K_4$, it is easy to check that G is a clique dominating set of $G \circ H$. In fact, the existence of the clique dominating set of the corona of two graphs, say G_1 and G_2 relies on the completeness of G_1 as exemplified in the following theorem.

Theorem 2.5 Let G be a connected nontrivial graph and H be any nontrivial graph. Then $G \circ H$ has a clique dominating set S if and only if G is complete and $S = V(G)$.

Proof: Suppose that S is a clique dominating set of $G \circ H$. Since G is a nontrivial graph, it follows that $S \cap V(H^v) = \emptyset$ for each $v \in V(G)$. Thus, $S = V(G)$ since S is a dominating set of $G \circ H$. Since $\langle S \rangle$ is a clique, it follows that G is a complete graph.

The converse is easy. □

Corollary 2.6 Let G be a complete nontrivial graph and H be any graph. Then

$$\gamma_d(G \circ H) = |V(G)|.$$

The lexicographic product $G[H]$ of two graphs G and H is the graph with vertex-set $V(G[H]) = V(G) \times V(H)$ and edge-set $E(G[H])$ satisfying the following conditions: $(x, u)(y, v) \in E(G[H])$ if and only if either $xy \in E(G)$ or $x = y$ and $uv \in E(H)$.

Observe that a subset C of $V(G[H]) = V(G) \times V(H)$ can be written as $C = \bigcup_{x \in S} (x \times T_x)$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for every $x \in S$. Henceforth, we shall use this form to denote any subset C of $V(G[H]) = V(G) \times V(H)$.

Theorem 2.7 Let G and H be connected nontrivial graphs. Then $G[H]$ has a clique dominating set if and only if G has a clique dominating set.

Proof: Suppose that $C = \bigcup_{x \in S} \{x\} \times T_x$ is a clique dominating set of $G[H]$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for each $x \in S$. Let $x, y \in S$ such that $x \neq y$. Pick any $t_1 \in T_x$ and $t_2 \in T_y$. Since $\langle C \rangle$ is complete and $(x, t_1), (y, t_2) \in C$, where $(x, t_1) \neq (y, t_2)$, it follows that $(x, t_1)(y, t_2) \in E(G[H])$. By the definition of composition of graphs, $xy \in E(G)$. Therefore, $\langle S \rangle$ is complete. Assume that $z \in V(G) \setminus S$. Choose any $t \in V(H)$. Then $(z, t) \notin C$. Since C is a dominating set of $G[H]$, $(z, t)(w, q) \in E(G[H])$ for some $(w, q) \in C$. Since $z \neq w$, it follows that $zw \in E(G)$. Hence, S is a dominating set of G. Consequently, S is a clique dominating set of G.

Conversely, let S be a clique dominating set of G. If $|S| = 1$, say $S = \{x\}$,
then \(S' = \{x, y\} \), where \(xy \in E(G) \) is also a clique dominating set of \(G \). Thus, we may assume that \(|S| \geq 2\). Choose any \(a \in V(H) \) and let \(T_x = \{a\} \) for each \(x \in S \). Set \(C^* = \bigcup_{x \in S} \{x\} \times T_x \neq S \times \{a\} \). Since \(\langle S \rangle \) is a clique in \(G \), \(\langle C^* \rangle \) is a clique in \(G[H] \). Let \((z, b) \notin C^*\). Suppose that \(z \notin S \). Since \(S \) is a dominating set of \(G \), there exists \(y \in S \) such that \(zy \in E(G) \). Hence, \((y, a) \in C^* \) and \((z, b)(y, a) \in E(G[H]) \). If \(z \in S \), then there exists \(w \in S \) such that \(zw \in E(G) \) and \(b \neq a \). Thus, \((z, b)(w, a) \in E(G[H]) \). This shows that \(C^* \) is a clique dominating set of \(G[H] \). \(\square\)

Corollary 2.8 Let \(G \) and \(H \) be connected nontrivial graphs. If

\[
C = \bigcup_{x \in S} \{x\} \times T_x
\]

, where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for each \(x \in S \), is a clique dominating set of \(G[H] \), then \(S \) is a clique dominating set of \(G \).

Theorem 2.9 Let \(G \) and \(H \) be connected nontrivial graphs such that \(G \) has a clique dominating set. A subset \(C = \bigcup_{x \in S} \{x\} \times T_x \), where \(S \subseteq V(G) \) and \(T_x \subseteq V(H) \) for each \(x \in S \), is a clique dominating set of \(G[H] \) if and only if \(S \) is a clique dominating set of \(G \) such that

(i) \(\langle T_x \rangle \) is a clique in \(H \) for each \(x \in S \) and

(ii) \(T_x \) is a dominating set of \(H \) whenever \(S = \{x\} \).

Proof: Suppose that \(C = \bigcup_{x \in S} \{x\} \times T_x \) is a clique dominating set of \(G[H] \). Then \(S \) is a clique dominating set of \(G \) by Corollary 2.8. Let \(x \in S \) and let \(a, b \in T_x \), where \(a \neq b \). Since \(\langle C \rangle \) is a clique in \(G[H] \), \((x, a)(x, b) \in E(G[H]) \). This implies that \(ab \in E(H) \). Thus, \(\langle T_x \rangle \) is a clique in \(H \). Now suppose that \(S = \{x\} \). Let \(c \in V(H) \setminus T_x \). Since \(C \) is a dominating set of \(G[H] \) and \((x, c) \notin C \), it follows that there exists \((x, d) \in C \cap N_{G[H]}((x, c)) \). Thus, \(d \in T_x \cap N_H(c) \). Therefore, \(T_x \) is a dominating set of \(H \).

For the converse, suppose that \(S \) is a clique dominating set of \(G \) satisfying (i) and (ii). Then, clearly, \(C = \bigcup_{x \in S} \{x\} \times T_x \) induces a clique in \(G[H] \). Let \((z, d) \notin C \). If \(z \notin S \), then there exists \(w \in S \) such that \(wz \in E(G) \). Choose any \(q \in T_w \). Then \((w, q) \in C \cap N_{G[H]}((z, d)) \). Suppose \(z \in S \). If \(|S| \geq 2\), then there exists \(y \in S \cap N_G(z) \). Pick any \(p \in T_y \). Then \((y, p) \in C \cap N_{G[H]}((z, d)) \). Suppose \(S = \{z\} \). Then, by assumption, \(T_z \) is a dominating set of \(H \). Hence, there exists \(t \in T_z \cap N_H(d) \). This implies that \((z, t) \in C \cap N_{G[H]}((z, d)) \). Therefore, \(C \) is a clique dominating set of \(G[H] \). \(\square\)
Corollary 2.10 Let G and H be connected nontrivial graphs such that G has a clique dominating set. Then
\[
\gamma_{cd}(G[H]) = \begin{cases}
1, & \text{if } \gamma(G) = \gamma(H) = 1 \\
2, & \text{if } \gamma(G) = 1 \text{ and } \gamma(H) \neq 1 \\
\gamma_{cd}(G), & \text{if } \gamma(G) \neq 1.
\end{cases}
\]

Proof: Clearly, $\gamma(G[H]) = \gamma_{cd}(G[H]) = 1$ if and only if $\gamma(G) = \gamma(H) = 1$. Suppose that $\gamma(G) = 1$ and $\gamma(H) \neq 1$. Let $S = \{x\}$ be a clique dominating set of G. Choose any $y \in (V(G) \setminus \{x\}) \cap N_G(x)$. Then $S_1 = \{x, y\}$ is a clique dominating set of G. Let $a \in V(H)$ and set $T_x = T_y = \{a\}$. Then by Theorem 2.9, $C = S_1 \times \{a\}$ is a clique dominating set of $G[H]$. Thus, $\gamma_{cd}(G[H]) = |C| = |S_1| = 2$. Next, suppose that $\gamma(G) \neq 1$. Let S be a γ_{cd}-set of G. Then $|S| \geq 2$. Choose any $a \in V(H)$ and let $T_x = \{a\}$ for each $x \in S$. Then $C = \bigcup \limits_{x \in S} ([x] \times T_x) = S \times \{a\}$ is a clique dominating set of $G[H]$ by Theorem 2.9. Hence, $\gamma_{cd}(G[H]) \leq |C| = |S| = \gamma_{cd}(G)$. On the other hand, if $C^* = \bigcup \limits_{x \in S^*} ([x] \times T_x)$ is a γ_{cd}-set of $G[H]$, then S^* is a clique dominating set of G. Thus, $\gamma_{cd}(G[H]) = |C^*| \geq |S^*| \geq \gamma_{cd}(G)$. Therefore, $\gamma_{cd}(G[H]) = \gamma_{cd}(G)$. □

The Cartesian product $G \square H$ of two graphs G and H is the graph with $V(G \square H) = V(G) \times V(H)$ and $(u, u')(v, v') \in E(G \square H)$ if and only if either $uv \in E(G)$ and $u' = v'$ or $u = v$ and $u'v' \in E(H)$.

Note that if $C \subseteq V(G \times H)$, then the G-projection and H-projection of C are, respectively, the sets
\[
C_G = \{u \in V(G) : (u, b) \in C \text{ for some } b \in V(H)\}
\]
and
\[
C_H = \{v \in V(H) : (a, v) \in C \text{ for some } a \in V(G)\}.
\]

Remark 2.11 Let G and H be connected nontrivial graphs. If C is a dominating set of $G \square H$, then $C_G = V(G)$ or $C_H = V(H)$.

It follows from Remark 2.11 that if C is a dominating set of $G \square H$, then either $C = \bigcup \limits_{x \in V(G)} ([x] \times T_x)$ or $C = \bigcup \limits_{a \in V(H)} [D_a \times \{a\}]$, where $T_x \subseteq V(H)$ for each $x \in V(G)$ and $D_a \subseteq V(G)$ for each $a \in V(H)$.

Theorem 2.12 Let G and H be connected nontrivial graphs of orders m and n, respectively. Then $G \square H$ has a clique dominating set if and only if either G is complete and $\gamma(H) = 1$ or H is complete and $\gamma(G) = 1$. Moreover,
\[
\gamma_{cd}(G \square H) = \begin{cases}
m, & \text{if } G \text{ is complete and } \gamma(H) = 1 \\
n, & \text{if } H \text{ is complete and } \gamma(G) = 1 \\
\min\{m, n\}, & \text{if } G \text{ and } H \text{ are both complete.}
\end{cases}
\]
Proof: Suppose that $G \boxtimes H$ has a clique dominating set, say C. Also, let $C_G = V(G)$. Then $C = \bigcup_{x \in V(G)} \{x\} \times T_x$, where $T_x \subseteq V(H)$ for each $x \in V(G)$.

Let $y, z \in V(G)$ such that $y \neq z$. Pick any $a \in T_y$ and $b \in T_z$. Since $\langle C \rangle$ is complete and (y, a) and (z, b) are distinct elements of C, it follows that $(y, a)(z, b) \in E(G \boxtimes H)$. Hence, $yz \in E(G)$ and $a = b$. This implies that G is complete and that $T_x = \{a\}$ for all $x \in V(G)$ and for some $a \in V(H)$. Now, let $c \in V(H) \setminus T_x$. Since C is a dominating set of $G \boxtimes H$ and $a \neq c$, it follows that $ac \in E(H)$. This shows that $T_x = \{a\}$ is a dominating set of H. Thus, $\gamma(H) = 1$. Similarly, H is complete and $\gamma(G) = 1$ if $C_H = V(H)$. The converse is easy.

Therefore,

$$
\gamma_{cl}(G \boxtimes H) = \begin{cases}
 m, & \text{if } G \text{ is complete and } \gamma(H) = 1 \\
 n, & \text{if } H \text{ is complete and } \gamma(G) = 1 \\
 \min\{m, n\}, & \text{if } G \text{ and } H \text{ are both complete.}
\end{cases}
$$

This proves the assertion. \square

References

Received: April 19, 2015; Published: September 12, 2015