Secure Weakly Convex Domination in Graphs

Rene E. Leonida

Mathematics Department
College of Natural Sciences and Mathematics
Mindanao State University
Fatima, General Santos City, Philippines

Abstract

In this paper, we investigate the concept of secure weakly convex domination set of some graphs. We characterized those graphs for which the secure weakly convex domination numbers are 1 and 2. Relations of this parameter with some domination parameters are also observed and a graph is constructed with a preassigned order, weakly convex domination number, secure weakly convex domination number, and secure convex domination number.

Mathematics Subject Classification: 05C69

Keywords: domination, secure domination, weakly convex domination, secure weakly convex domination

1 Introduction

Let $G = (V(G), E(G))$ be a connected undirected graph. For any vertex $v \in V(G)$, the open neighborhood of v is the set $N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $X \subseteq V(G)$, the open neighborhood of X is $N(X) = \bigcup_{v \in X} N(v)$ and the closed neighborhood of X is $N[X] = X \cup N(X)$. For any two vertices u and v of G, the distance $d_G(u, v)$ is the length of the shortest u-v path in G. A u-v
path of length $d_G(u, v)$ is called u-v geodesic. A set $C \subseteq V(G)$ is a weakly convex set of G if for every two vertices $u, v \in C$ there exists a u-v geodesic whose vertices belongs to C, or equivalently, if for every two vertices $u, v \in C$, $d_C(u, v) = d_G(u, v)$. A set C is a convex set of G if for every two vertices $u, v \in C$, the vertex-set of every u-v geodesic is contained in C.

A set S is a dominating set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that $uv \in E(G)$. The domination number of G, denoted by $\gamma(G)$, is the smallest cardinality of a dominating set of G. A dominating set of G which is weakly convex (respectively, convex) is called a weakly convex (respectively, convex) dominating set. The weakly convex (respectively, convex) domination number of G, denoted by $\gamma_{wcon}(G)$ (respectively, $\gamma_{con}(G)$), is the smallest cardinality of a weakly convex (respectively, convex) dominating set of G.

A set S is a secure weakly convex (respectively, secure convex) dominating set of G if S is a weakly convex (respectively, convex) set of G and for every $u \in V(G) \setminus S$, there exists $v \in S$ such that $uv \in E(G)$ and $(S \setminus \{v\}) \cup \{u\}$ is a weakly convex dominating set of G. The secure weakly convex (respectively, secure convex) domination number of G, denoted by $\gamma_{swc}(G)$ (resp., $\gamma_{scon}(G)$), is the smallest cardinality of a secure weakly convex (respectively, convex) dominating set of G.

The concept of weakly convex domination was introduced by Jerzy Topp and is discussed in [3] and [4]. Another domination parameter is the secure domination which was discussed in [1], [2], and [5]. A combination of these two concepts give rise to a new variant of domination called secure weakly convex domination.

Remark 1.1 Let G be a connected graph of order n. Then $1 \leq \gamma_{swc}(G) \leq n$.

2 Results

Note that if S is a secure weakly convex dominating set of a connected graph G, then $\langle S \rangle$ is connected.

Proposition 2.1 Let G be a connected graph of order $n \geq 3$ and let S be a secure weakly convex dominating set of G.

(i) Every cut-vertex of G is in S.

(ii) Every leaf of G is in S.

Proof: (i) Let v be a cut-vertex of G. Then $\langle V(G) \setminus \{v\} \rangle$ consists of at least two components. Let S be a secure weakly convex dominating set of G. Suppose $v \notin S$. Since $\langle S \rangle$ is connected, S is contained in some component of $\langle V(G) \setminus \{v\} \rangle$. This implies that $V(G) \setminus S$ contains some vertices in the other components of $\langle V(G) \setminus \{v\} \rangle$. This contradicts the assumption that S is a...
dominating set of G. Therefore, $v \in S$.

(ii) Let v be a leaf of G. Then $\deg_G(v) = 1$. Let S be a secure weakly convex dominating set of G. Suppose that $v \notin S$. Since S is a dominating set of G and $\deg_G(v) = 1$, there exists a unique $u \in S$ such that $uv \in E(G)$. This implies that $\langle (S \setminus \{u\}) \cup \{v\} \rangle$ is not connected. This is a contradiction. Therefore, $v \in S$. □

Note that a star consists of a cut-vertex and leaves; and a path consists of cut-vertices and two leaves. The following results follows from Proposition 2.1

Corollary 2.2 Let $n \geq 3$ be an integer. Then

(i) $\gamma_{swc}(K_{1,n-1}) = n$.

(ii) $\gamma_{swc}(P_n) = n$.

The next result characterizes a graph G with $\gamma_{swc}(G) = 1$.

Theorem 2.3 Let G be a connected graph of order $n \geq 2$. Then $G = K_n$ if and only if $\gamma_{swc}(G) = 1$.

Proof: Clearly, if $G = K_n$, then $\gamma_{swc}(G) = 1$.

Conversely suppose that $\gamma_{swc}(G) = 1$. Let $S = \{v\}$ be a secure weakly convex dominating set of G. Suppose that $G \neq K_n$. Then there exists $u, w \in V(G)$ such that $uw \notin E(G)$. Thus, $(S \setminus \{v\}) \cup \{u\} = \{u\}$, which is not a dominating set of G. This is a contradiction. Therefore, $G = K_n$. □

The next result characterizes a graph G with $\gamma_{swc}(G) = 2$.

Theorem 2.4 Let G be a non-complete connected graph. Then $\gamma_{swc}(G) = 2$ if and only if there exists a non-complete graph H such that $G = K_2 + H$.

Proof: Suppose that $\gamma_{swc}(G) = 2$. Let $S = \{u, v\}$ be a secure weakly convex dominating set of G. Then $uv \in E(G)$. Define K_2 and H by the following: Take $V(K_2) = S$ and $V(H) = V(G) \setminus S$. Then $G = K_2 + H$. Since G is non-complete, it follows that H is non-complete.

Conversely, suppose there exists non-complete graph H such that $G = K_2 + H$. Then G is non-complete. By Theorem 2.3, $\gamma_{swc}(G) \neq 1$ that is, $\gamma_{swc}(G) \geq 2$. Let $S = \{u, v\}$, where $u, v \in V(K_2)$. Then S is a weakly convex set of G. By the definition of $K_2 + H$, S is a dominating set of G. Let $x \in V(G) \setminus S$. Then $x \in V(H)$ and $ux, vx \in E(G)$. Now, $(S \setminus \{u\}) \cup \{x\} = \{v, x\}$. Since $vx \in E(G)$ and x is arbitrary, $(S \setminus \{u\}) \cup \{x\}$ is a weakly convex dominating set of G. This shows that S is a secure weakly convex dominating set of G and $\gamma_{swc}(G) \leq |S| = 2$. Therefore, $\gamma_{swc}(G) = 2$. □
Corollary 2.5 Let G be a non-complete graph and $n \geq 2$. Then $\gamma_{swc}(G + K_n) = 2$.

Proof: Let $H = K_{n-2} + G$. Then H is a non-complete graph. Thus, $G + K_n \cong H + K_2$. By Theorem 2.4, $\gamma_{swc}(G + K_n) = \gamma_{swc}(H + K_2) = 2$. \square

Since a secure weakly convex dominating set is a weakly convex dominating set and every secure convex dominating set is a secure weakly convex dominating set, we have

Remark 2.6 Let G be a connected graph. Then $\gamma_{wcon}(G) \leq \gamma_{swc}(G) \leq \gamma_{scon}(G)$.

Theorem 2.7 Given integers a, b, c, and n with $3 \leq a < b < c < n$, there exists a connected graph G such that $|V(G)| = n$, $\gamma_{wcon}(G) = a$, $\gamma_{swc}(G) = b$, $\gamma_{scon}(G) = c$.

Proof: Consider the path $P_{a+1} = [u_1, u_2, ..., u_a, u_{a+1}]$. Let G be a graph obtained from P_{a+1} by adding the edges u_1v_1 for $i = 1, 2, ..., b-a-1$, adding the paths $[u_1, w_j, u_3]$ and $[u_2, w_j]$ for $j = 1, 2, ..., c-b$, adding the vertices $z_1, z_2, ..., z_{n-c}$ and forming the complete graph K_{n-c+2}, where $V(K_{n-c+2}) = \{z_1, ..., z_{n-c}, u_a, u_{a+1}\}$ (see Figure 1).

Figure 1: A graph G with $\gamma_{wcon}(G) < \gamma_{swc}(G) < \gamma_{scon}(G)$

Then $\{u_1, u_2, ..., u_a\}$ is a weakly convex dominating set of G, $\{u_1, u_2, ..., u_a, u_{a+1}\} \cup \{v_1, v_2, ..., u_{b-a-1}\}$ is a secure weakly convex dominating set of G, and $\{u_1, u_2, ..., u_a, u_{a+1}\} \cup \{v_1, v_2, ..., u_{b-a-1}\} \cup \{w_1, w_2, ..., w_{c-b}\}$ is a secure convex dominating set of G. Hence, $\gamma_{wcon}(G) = a$, $\gamma_{swc}(G) = b$, $\gamma_{scon}(G) = c$. Moreover, $|V(G)| = (a + 1) + (b - a - 1) + (c - b) + (n - c) = n$. \square

The next result immediately follows from Theorem 2.7.

Corollary 2.8 For each positive integer k, there exists a connected graph G for which $\gamma_{swc}(G) - \gamma_{wcon}(G) = \gamma_{scon}(G) - \gamma_{swc}(G) = k$.
Corollary 2.9 The domination parameters $\gamma_{\text{swc}}(G)$ and $\gamma_{\text{con}}(G)$ are not comparable.

Proof: Consider a graph G in Theorem 2.7. Then \(\{u_1, u_2, ..., u_a\} \cup \{w_1, w_2, ..., w_{c-b}\} \) is a convex dominating set of G. Thus, $\gamma_{\text{con}}(G) = a + c - b$. If $2b \leq a + c$, then $\gamma_{\text{swc}}(G) \leq \gamma_{\text{con}}(G)$. Otherwise, $\gamma_{\text{swc}}(G) > \gamma_{\text{con}}(G)$. This shows that the two domination parameters are not comparable. \(\square \)

References

Received: December 5, 2014; Published: December 22, 2014