Instant Blow-up Solutions for
Porous Medium Equation with Sources

Huiling Duan 1,2, Tao Peng and Liangwei Wang

School of Math. Stat., Chongqing Three Gorges University, China

Abstract
In this paper, a porous medium equation with sources in \mathbb{R}^N is considered. We study the solutions of the initial value problem, it is shown that the instant blow-up occurs provided that only nonnegative solutions are considered.

Keywords: porous medium equation, instant blow-up, initial value problem

1 Introduction
In this paper, we consider the initial value problem for a porous medium equation with source as following

$$u_t = \Delta u^m + f(u), \quad (x, t) \in \mathbb{R}^N \times (0, T), \quad (1.1)$$

$$u(x, 0) = u_0(x), \quad x \in \mathbb{R}^N. \quad (1.2)$$

where $m > 1$, $u_0(x)$ is a nonnegative, bounded and continuous function, the nonlinear term $f \in C^1(\mathbb{R})$ and we assume that f is positive, nondecreasing and convex in $(0, \infty)$ and $\int_1^\infty \frac{ds}{f(s)} < \infty$. It is well known that problem (1.1)--(1.2)

1Corresponding author
2This work are supported by NSFC, China Postdoctoral Science Foundation, Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1401003)
has a unique, nonnegative and bounded solution, defined in some weak sense, at least locally in time [1, 12]. We put

\[T^* = T^*(u_0) = \sup\{T > 0; u(t) \text{ is bounded and solves Eq. (1.1)-(1.2) in } \mathbb{R}^N \times (0; T)\}, \]

\(T^* \) is called the life span of solutions \(u(t) \). If \(T^* = \infty \) the solutions are global. On the other hand, if \(T^* < \infty \) one has

\[\lim_{t \to T^*} u(t) = \infty, \]

since otherwise solutions could be extended beyond \(T^* \). When Eq. (1.3) holds we say that the solution blows up in finite time.

When \(f(u) = u^p \) in (1.1), the blow-up and the global existence of solutions are studied by Galaktionov et al. [3], Galaktionov [2], Kawanago [8], and Mochizuki et al. [9]. And the following results are known to hold:

1. Let \(1 < m < p^* = m + \frac{2}{N} \). Then \(T^* < \infty \) for every nontrivial solution \(u(t) \).

II. Let \(p > m + \frac{2}{N} \). Suppose

\[u_0(x) \geq E_m(x; t_0; L) \]

for some \(t_0 > 0 \) and some \(L > 0 \) large enough. Then \(T^* < \infty \). Here \(E_m(x; t; L) \) is the Barenblatt solution to the porous media equation

\[\frac{\partial u}{\partial \ell} = \Delta u_m. \]

III. Let \(p > m + \frac{2}{N} \). Suppose \(u_0 \in L^{\frac{(p-m)N}{2}}(\mathbb{R}^N) \), if \(\|u_0\|_{(p-m)N} \) is sufficiently small, then \(T^* = \infty \) and

\[\|u(t)\|_{\infty} \leq C t^{\frac{1}{(m+2)/(N-1)}} \text{ as } t \to \infty. \]

The purpose of this article is to prove that \(T^* = 0 \) when initial data \(u_0 \) is growing at the space infinity, i.e., an instant blow-up occurs for the system (1.1)-(1.2). That is to say there is even no local-in-time solution. These problems have been studied by for the Cauchy problem of semilinear equation \(u_t = \Delta u + f(u) \). For other some interesting results about problem (1.1)-(1.2) one can see [4, 5, 6, 7], or [10, 11, 12] when \(f(u) = 0 \). Our results will partly extend theirs to the quasilinear problem (1.1)-(1.2) [1]. Our result is the following theorem.
Theorem 1.1. Suppose that \(f \) is positive, nondecreasing and convex in \((0, \infty)\) and \(\int_1^\infty \frac{ds}{f(s)} < \infty \). If \(u_0 \in C(\mathbb{R}^n) \) is nonnegative and there are a sequence \(x_k \subset \mathbb{R}^n \) with \(|x_k| \to \infty \) as \(k \to \infty \) and a number \(r > 0 \) such that

\[
\lim_{k \to \infty} b_k = \infty \quad \text{with} \quad b_k = \inf \{ u_0(x) : |x - x_k| \leq r \}.
\] (1.3)

Then \(T^* = 0 \). That is, the instant blow-up occurs if only nonnegative solutions are considered.

Remark 1.1. Assumption (1.3) can be relaxed so that \(r = r_k \) depends on \(k \) provided that

\[
\lim_{k \to \infty} \sup \frac{b_k^m}{r_k^2 f(b_k)} < \epsilon
\] (1.4)

with small \(\epsilon > 0 \), say, \(0 < \epsilon < \epsilon_0 \); the smallness constant \(\epsilon_0 \) depends only on the first eigenvalue of \(-\Delta\) in a unit ball with the Dirichlet boundary condition, thus it only depends on the space dimension \(n \).

2 Proof of our result

Proof. Let \(\lambda_k \) be the principal eigenvalue of \(-\Delta\) with Dirichlet problem in \(B_{R_k}(0) \), and set \(\phi_k(x) \geq 0 \) denote the corresponding positive eigenfunction normalized by \(\int_{B_{R_k}(0)} \phi_k(x)dx = 1 \). By scaling it is easy to see that

\[
\lambda_k = \frac{c}{r_k^2}
\]

for some \(c > 0 \). Consider

\[
G_k(t) = \int_{B(x_k,r_k)} u(x,t)\phi_k(x-x_k)dx.
\]

Then

\[
G_k'(t) = \int_{B(x_k,r_k)} u_t(x,t)\phi_k(x-x_k)dx
\]

\[
= \int_{B(x_k,r_k)} [\Delta u^m(x,t) + f(u(x,t))]\phi_k(x-x_k)dx
\]

Denoted by \(n_k(x) \) the outward unit normal to \(B(0,r_k) \) at \(x \in \partial B(0,r_k) \). We can easily have \(\phi_k = 0 \) and \(\frac{\partial \phi_k}{\partial n_k} \leq 0 \) on \(\partial B(0,r_k) \) with the unit normal vector
Integrating by parts, and using Green’s formula and Jensen’s inequality we have

\[G_k'(t) \geq \int_{B(x_k, r_k)} u^m(x, t) \Delta \phi_k(x - x_k) \, dx \]
\[+ \int_B (x_k, r_k) f(u_t(x, t)) \phi_k(x - x_k) \, dx \]
\[\geq -\lambda_k G_k^m(t) + f(G_k(t)). \]

Now we consider the following system of ordinary differential equations

\[g_k'(t) = -\lambda_k g_k^m(t) + f(g_k(t)), \]
\[g_k(0) = G_k(0) \geq b_k. \]

Set \(T_{g_k} = \sup\{t \geq 0 : g_k(t) < \infty\} \) and \(T_{G_k} = \sup\{t \geq 0 : G_k(t) < \infty\} \). By a comparison principle, it is easy to see that \(G_k \geq g_k \), thus we have \(T_{g_k} \geq T_{G_k} \).

If \(r_k \) is a constant so that \(\lambda_k = \lambda \) is independ of \(k \), then

\[T_{G_k} \leq T_{g_k} \leq \int_{b_k}^{\infty} \frac{d\xi}{-\lambda_k \xi^m + f(\xi)} \to 0 \quad \text{as} \quad k \to \infty. \]

This implies that \(T_{G_k} \to 0 \) as \(k \to \infty \). Thus for sufficient large \(k \), \(T_{G_k} < T \). This is a contradiction since \(u \) is continuous in \(\mathbb{R}^N \times [0, T) \).

Next we will discuss the case that \(r_k \to 0 \) as \(k \to \infty \) satisfying (1.4). Now consider the solutions of (1.1) – (1.2) with the initial data \(b_k \). The maximal existence time of the solution denoted by \(T^*(b_k) \) is estimated as

\[T^*(b_k) = \int_{b_k}^{\infty} \frac{d\xi}{f(\xi)}. \]

Since \(\lim_{k \to \infty} b_k = \infty \), then \(\lim_{k \to \infty} T^*(b_k) = 0 \). Thus the formula

\[\frac{T^*(b_k)}{T_{g_k}} \geq \frac{\int_{b_k}^{\infty} d\xi / f(\xi)}{\int_{b_k}^{\infty} d\xi / (-\lambda_k \xi^m + f(\xi))}. \quad (2.5) \]

From (1.4), one can assume that there exist \(k_0 \geq 0 \) such that

\[\frac{b_k^m}{r_k^2 f(b_k)} < \epsilon \]

for \(k \geq k_0 \). Since \(\lambda_k = \frac{c}{r_k^2} \), we see that

\[\lambda_k b_k^m < c \epsilon f(\xi). \]
Instant blow-up solutions for porous medium equation with sources

Since \(f \) is positive, nondecreasing and convex in \((0, \infty)\) and \(\int_1^{\infty} \frac{ds}{f(s)} < \infty \), one can obtain
\[
\lambda_k \xi^m < c \epsilon f(\xi)
\]
for \(\xi \geq b_k \). Then
\[
\int_{b_k}^{\infty} \frac{d\xi}{-\lambda \xi^m + f(\xi)} < \int_{b_k}^{\infty} \frac{d\xi}{(1 - c \epsilon) f(\xi)} = \frac{1}{1 - c \epsilon} \int_{b_k}^{\infty} \frac{d\xi}{f(\xi)} \quad (2.6)
\]
From (2.5)–(2.6), we get
\[
\frac{T^*(b_k)}{T_{g_k}} > 1 - c \epsilon > 0
\]
for \(k \geq k_0 \). Thus we obtain
\[
\lim_{k \to \infty} \frac{T^*(b_k)}{T_{g_k}} > 1 - c \epsilon > 0.
\]
Noting that \(\lim_{k \to \infty} T^*(b_k) = 0 \), we see that \(\lim_{k \to \infty} T_{g_k} = 0 \). Again we have \(T_{G_k} \to 0 \) as \(k \to 0 \) which is also a contradiction. So we complete the proof of Theorem 1.1.

References

Received: June 21, 2014