Rainbow Connection Numbers of Some Graphs

Syafrizal Sy
Department of Mathematics, Faculty of Mathematics and Natural Science
Universitas Andalas, Kampus Unand Limau Manis, Padang, Indonesia, 25163

Reni Wijaya
Graduate Program of Mathematics, Faculty of Mathematics and Natural Science
Universitas Andalas, Kampus Unand Limau Manis, Padang, Indonesia, 25163

Surahmat
Department of Mathematics Education, Universitas Islam Malang
Jl. MT Haryono 193, Malang 65144, Indonesia

Copyright © 2014 Syafrizal Sy, Reni Wijaya and Surahmat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A path in an edge–colored graph is said to be a rainbow path if every edge in the path has different color. An edge colored graph is rainbow connected if there exists a rainbow path between every pair of vertices. The rainbow connection of a graph G, denoted by $rc(G)$, is the smallest number of colors required to color the edges of graph such that the graph is rainbow connected.

In this paper, we determine the exact values of $rc(G)$ where G are G_n, B_n, and cycle-chain graph $(C_{n_1}, \ldots, C_{n_k})$–path which C_{n_i} is a cycle for every $i = 1, \ldots, k$ with $u_1, u_2, \ldots, u_{k-1}$ are the cut vertices of G.

Mathematics Subject Classification: 05C15, 05C40

Keywords: Book graph, coloring, cycle-chain graph, gear, path, rainbow connection, wheel
1 Introduction

Throughout the paper, all graphs are finite, simple, connected. Let G be such a graph. We write $V(G)$ or V for the vertex set of G, and $E(G)$ or E for the edge set G. We define a coloring $c : E(G) \rightarrow \{1, 2, \ldots, k\}$, of the edges of G, such that the adjacent edges can be colored the same. A u-v path P in G is a rainbow path if every edge of P receives different color. The graph G is rainbow-connected (with respect to c) if G contains a rainbow u-v path for every two vertices u, v in G. In this case, the coloring c is called a rainbow coloring of G. If k colors are used, then c is a rainbow k-coloring. The minimum k such that G has a rainbow k-coloring is the rainbow connection number $rc(G)$ of G. The rainbow coloring of G using $rc(G)$ colors is called the minimum rainbow coloring of G.

The notions of this rainbow coloring was introduced by Chartrand et al. [1] in 2008. Some related to this work are mentioned in the following. Chartrand et al. obtained that $rc(G) = 1$ if and only if G is complete, and that $rc(G) = m$ if and only if G is a tree, as well as that a cycle with $k > 3$ vertices has rainbow connection number $\lceil \frac{k}{2} \rceil$, a triangle has rainbow connection number 1 ([1]). Also notice that, clearly, $rc(G) \geq diam(G)$ where $diam(G)$ denotes the diameter of G. Furthermore, Dewi Estetikasari and Syafrizal Sy [2] determined the exact values of rainbow connection for some corona graph.

2 Main Results

These are the main results of the paper.

Theorem 2.1 For each integer n, the rainbow connection of G is $rc(G) = 4$ where $G \cong G_n$ with $n \geq 4$, or $G \cong B_n$ with $n \geq 3$.

Proof. We consider two cases.

Case 1. For $G \cong G_n$ with $n \geq 4$.

A cycle C_n of length $n \geq 3$ is a connected graph on n vertices in which every vertex has degree two. Let W_n be a wheel of $n + 1$ vertices; namely, a graph consists of a cycle C_n with one additional vertex being adjacent to all vertices of C_n. A gear G_n is a wheel graph with a vertex added between each pair of adjacent graph vertices of the outer cycle such that G_n has $2n + 1$ vertices and $3n$ edges. Clearly that $diam(G_n) = 4$. Thus, $rc(G) \geq diam(G_n) = 4$.

Next, we will show that $rc(G) \leq 4$. Consider $V(G_n) = V(C_{2n}) \cup \{v\}$ where $V(C_{2n}) = \{v_1, v_2, \ldots, v_{2n}\}$ is a set of vertices in cycle C_{2n}. We define the coloring on G_n by 4-coloring $c : E(G_n) \rightarrow \{1, 2, 3, 4\}$ as follow
By definition of coloring all edges on G of G for every i

Stars S

A cycle-chain graph (G

Therefore, we have $rc(n,)$

Proof i is a cycle for every i

Rainbow connection numbers of some graphs

Case 2. For $G \cong B_n$ with $n \geq 3$, clearly that $diam(B_n) = 3$. Let $P := p_i, p, q, p_{i+1}$ be a rainbow path. We consider G. A graph B_n consists of two stars S^1_n and S^2_n where the centers are p and q, and p_i and q_i are leafs with $i = 1, \ldots, n$, respectively, and for every vertex p_i adjacent to q_i.

![Figure 1: Book graph B_2](image1)

Next, we define the coloring on B_n by $c : E(B_n) \rightarrow \{1, 2, 3, 4\}$ as follow

$$c(e) = \begin{cases}
1, & \text{if } e = pq; \\
2, & \text{if } e = pp_i \text{ with } i = 1, \ldots, n; \\
3, & \text{if } e = qq_i \text{ with } i = 1, \ldots, n; \\
4, & \text{if } e = p_i q_i \text{ with } i = 1, \ldots, n.
\end{cases}$$

By definition of coloring of all edges on G, we have $rc(G_n) \leq 4$.

Therefore, we have $rc(B_n) = 4$ for $n \geq 3$. □

Let $G \cong (C_{n_1}, \ldots, C_{n_k}) - path$ be a cycle-chain graph which C_{n_i} is a cycle for every $i = 1, \ldots, k$ with $u_1, u_2, \ldots, u_{k-1}$ are the cut vertices of G. Fig. 2, A cycle-chain graph $(C_5, C_6, C_5, C_4, C_3)$-path.

Theorem 2.2 For each integer $n_i \geq 3$ and $k \geq 2$, the rainbow connection of $G \cong (C_{n_1}, \ldots, C_{n_k}) - path$ is $rc(G) = \left\lceil \frac{n_1}{2} \right\rceil + \sum_{i=2}^{k} \left\lceil \frac{n_i}{2} \right\rceil$ where C_{n_i} is a cycle on n_i vertices for every i.

Proof. We consider cycle-chain graph $G \cong (C_{n_1}, \ldots, C_{n_k}) - path$ which C_{n_i} is a cycle for every $i = 1, \ldots, k$. Let u_i be the cut vertex of C_{n_i} and $C_{n_{i+1}}$.
with $i = 1, 2, \ldots, k - 1$. Thus $U = \{u_1, u_2, \ldots, u_{k-1}\}$ is a set of cut vertices of G. Graph G is consist of $\Sigma_{i=1}^{k} n_i$ edges and $\Sigma_{i=1}^{k} n_i - k + 1$ vertices where $k - 1$ vertices are degree 4, and the other vertices are degree 2. By [1], we have $rc(C_{n_i}) = \lceil n_i/2 \rceil$ for every $i = 2, 3, \ldots, k$. As a consequence, since $d(x, u_1) \leq diam(C_{n_1})$ for $x \in C_{n_1}$ then we obtain $rc(G) \geq \lceil n_1/2 \rceil + \Sigma_{i=2}^{k} \lceil n_i/2 \rceil$ where C_{n_i} is a cycle on n_i vertices for every i.

Next, we will show that $rc(G) \leq \lceil n_1/2 \rceil + \Sigma_{i=2}^{k} \lceil n_i/2 \rceil$ where C_{n_i} is a cycle on n_i vertices for every i. Clearly that, we need the number of colors is $\lceil n_i/2 \rceil$ for every C_i where $i = 1, 2, \ldots, k$. Since $\lceil n_i/2 \rceil - \lfloor n_i/2 \rfloor \leq 1$ then there one edge, say e, in C_{n_i} such that $rc(G) \leq \lfloor n_1/2 \rfloor - |\{e\}| + \Sigma_{i=1}^{k} \lceil n_i/2 \rceil$. As a consequence, we obtain $rc(G) \leq \lfloor n_1/2 \rfloor + \Sigma_{i=2}^{k} \lceil n_i/2 \rceil$.

Therefore, we have $rc(G) = \lfloor n_1/2 \rfloor + \Sigma_{i=2}^{k} \lceil n_i/2 \rceil$ where C_{n_i} is a cycle on n_i vertices for every i. □

ACKNOWLEDGEMENTS. This research was partially supported by Department of Mathematics – Universitas Andalas and Department of Mathematics Education – Unisma, Malang - Indonesia.

References

Received: June 1, 2014