Corrigendum to

S. Pasotti, S. Pianta: The limit rotation loop of a hyperbolic plane, Applied Mathematical Sciences, 7 (2013), no. 117-120, 5863-5878

Stefano Pasotti

DICATAM - Sez. Matematica
Università degli Studi di Brescia
Via Valotti, 9
25133 Brescia, Italy

Silvia Pianta

Dip. Matematica e Fisica
Università Cattolica
Via Trieste, 17
25122 Brescia, Italy

Copyright © 2014 Stefano Pasotti and Silvia Pianta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

There is a small gap in the proof of Theorem 4.5 of the mentioned paper. Here the authors give the complete proof.

Mathematics Subject Classification: 51M10, 20N05

Keywords: loops, hyperbolic plane, limit rotation loop, automorphisms

In the mentioned paper, the so called limit rotation loop of the hyperbolic plane over a Euclidean field K, introduced in [1], is studied in its embedding in the 3-dimensional projective space over K as a transversal of the coset space G/D, where $G = PSL_2(K)$ and D is the subgroup of the hyperbolic rotations
fixing a given point \(o \). Moreover the automorphism group of such loop is determined in \textbf{Theorem 4.5}. This statement is correct but unfortunately the authors themselves have found a small gap in the proof. Therefore, for the sake of clarity and completeness, we have:

1. at page 5875, line 4, to replace \(PSL_2(K) \) with \(PGL_2(K) \);

2. in the proof of \textbf{Theorem 4.5},
 - to put \(\text{Aut}(PSL_2(K)) = \text{Aut}(PGL_2(K)) \) at page 5877, end of line 5, and
 - to complete lines 11-12 of the same page in the following way: "this result follows noticing that, for all \(G \in PGL_2(K) \), \(\psi_G(\Lambda^+) = \Lambda^+ \) implies that \(G \in PSL_2(K) \), and:"

For more clarity, we write here completely the corrected version of the mentioned theorem with its proof (pages 5876-5877):

\textbf{Theorem 4.5.} \textit{Let \((H, \oplus) \) be the limit rotation loop of a general hyperbolic plane over a Euclidean field \(K \). Then}

\[\text{Aut}(H, \oplus) \cong \Psi_D \rtimes \text{K} \]

\textit{where \(\Psi_D \) is the subgroup of \(\Psi \) made up of collineations of \(PG(3, K) \) derived from inner automorphisms corresponding to the elements of the group \(D \) and \(\text{K} \) is the group of pure semilinear collineations, namely made up of elements \(\alpha \in \text{K} \) such that}

\[\overline{\alpha} : \left\{ \begin{array}{c} PG(3, K) \\ K^*(x_1, x_2, x_3, x_4) \end{array} \right\} \rightarrow PG(3, K) \]

\[K^*(x_1^\alpha, x_2^\alpha, x_3^\alpha, x_4^\alpha) \]

\textit{where \(\alpha \in \text{Aut}(K, +, \cdot) \).}

\textit{Proof.} In the group \(PSL_2(K) \) consider the fibration made up of the centralizers of each element. It is well known that this fibration is characteristic, and, in our representation of the group \(PSL_2(K) \) as a subset of the pointset of the projective space \(PG(3, K) \), it corresponds precisely to the lines of \(PG(3, K) \) through the point \(1 \). By [3, props 2.1 and 2.3] the group \(\text{Aut}(PSL_2(K)) = \text{Aut}(PGL_2(K)) \) is precisely the subgroup of collineations of the projective space fixing \(1 \) and preserving the quadric \(Q \), moreover by [3, Thm 1] it holds

\[\text{Aut}(PSL_2(K)) \cong \Psi \rtimes \text{K}. \]

Hence, according to the previous proposition, the subgroup \(T \leq \text{Aut}(PSL_2(K)) \) is isomorphic to a subgroup of collineations of \(PG(3, K) \), and to prove the statement it remains only to show that \(T \cong \Psi_D \rtimes \text{K} \). This result follows noticing that for all \(G \in PGL_2(K) \), \(\psi_G(\Lambda^+) = \Lambda^+ \) implies that \(G \in PSL_2(K) \), and:
1. for all $G \in PSL_2(K)$ it holds $\psi_G(D) = D$ if and only if $G \in D$, thus $\Psi_D = \{\psi_G \in \Psi \mid \psi_G(D) = D \text{ and } \psi_G(\Lambda^+) = \Lambda^+\};$

2. since the field K is euclidean, each $\alpha \in K$ preserves the ordering in K, thus by 3.5 it preserves the half cone Λ^+; moreover it is straightforward to see that $\overline{\alpha}(D) = D$.

\[\square \]

References

Received: June 1, 2014