Left Centralizers of Semiprime Gamma Rings with Involution

M.F. Hoque

School of Mathematics and Physics
The University of Queensland, Australia
and
Faculty at the Department of Mathematics
Pabna University of Science and Technology, Bangladesh

Fahad Sameer Alshammari

Department of Mathematics
Salman Bin Abdulaziz University, Saudi Arabia

A.C. Paul

Department of Mathematics
University of Rajshahi, Bangladesh

Copyright © 2014 M.F. Hoque, Fahad Sameer Alshammari and A.C. Paul. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The purpose of this article is to define notions of I-involution on Γ-rings, existence and prove some interesting results:

(i) Let M be a 2-torsion free semiprime Γ-ring with I-involution and satisfying a certain assumption. If $T : M \rightarrow M$ is a Jordan left centralizer on M, then T is a left centralizer.

(ii) Let M be a 2-torsion free semiprime Γ-ring with I-involution and $T : M \rightarrow M$ an additive mapping such that

$$T(x\alpha I(x) + I(x)\alpha x) = T(x)\alpha I(x) + I(x)\alpha T(x)$$
holds for $x \in M$ and $\alpha \in \Gamma$. If M has an identity element and M satisfy a certain assumption, then $T(x) = aax$ for any $x \in M$ and some $a \in Z(M)$.

Mathematics Subject Classification: Primary 16N60. Secondary 16W25, 16U80

Keywords: semiprime Γ-ring, I-involution, semiprime Γ-ring with I-involution, left centralizer, centralizer, Jordan centralizer

1 Introduction

The notion of a gamma ring was first introduced as an extensive generalization of the concept of a classical ring. From its first appearance, the extensions and generalizations of various important results in the theory of classical rings to the theory of gamma rings have been attracted a wider attentions as an emerging field of research to the modern algebraists to enrich the world of algebra. All over the world, there is a large number of mathematicians are recently engaged to execute more productive and creative results of gamma rings.

Nobusawa[12] first introduced the notion of a Γ-ring and shown that Γ-rings, more general than rings. Bernes[1] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa. Bernes[1], Kyuno[10], Luh[11], Ceven[2], Hoque et al[5,6,8,9], Dey et al[3,4], Ullah et al[14] and others were obtained a large numbers of important basic properties of Γ-rings in various ways and developed more remarkable results of Γ-rings. We start with the following necessary definitions.

Let M and Γ be additive abelian groups. If there exists an additive mapping $(x, \alpha, y) \rightarrow x\alpha y$ of $M \times \Gamma \times M \rightarrow M$, which satisfies the conditions $(x\alpha y)\beta z=x\alpha (y\beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, then M is a Γ-ring. Every ring M is a Γ-ring with $M=\Gamma$. However a Γ-ring need not be a ring. Through out the article, we use M as a Γ-ring.

An additive subgroup U of M is a left (right) ideal of M if $M \Gamma U \subseteq U(UTM \subseteq U)$. If U is both a left and a right ideal, then we say U is an ideal of M. The Γ-ring M is 2-torsion free if $2x=0$ implies $x=0$ for all $x \in M$. An ideal P_1 of M is prime if for any ideals A and B of M, $A \Gamma B \subseteq P_1$ implies $A \subseteq P_1$ or $B \subseteq P_1$. An ideal P_2 of M is semiprime if for any ideal U of M, $U \Gamma U \subseteq P_2$ implies $U \subseteq P_2$. M is prime if $a \Gamma M \Gamma b=(0)$ with $a, b \in M$, implies $a=0$ or $b=0$ and semiprime if $a \Gamma M \Gamma a=(0)$ with $a \in M$ implies $a=0$. Furthermore, M is commutative if $x\alpha y=y\alpha x$ for all $x, y \in M$ and $\alpha \in \Gamma$. Moreover, the set $Z(M) = \{x \in M : x\alpha y = y\alpha x$ for all $\alpha \in \Gamma, y \in M \}$ is the centre of M.
In \(M \), \([x, y]_\alpha = x\alpha y - y\alpha x \) is known as the commutator of \(x \) and \(y \) with respect to \(\alpha \), where \(x, y \in M \) and \(\alpha \in \Gamma \). We make the basic commutator identities:

\[
[x\alpha y, z]_\beta = [x, z]_\beta \alpha y + x\alpha [y, z]_\beta;
\]

and \([x, y\alpha z]_\beta = [x, y]_\beta \alpha z + y\alpha [x, z]_\beta\)

for all \(x, y, z \in M \) and \(\alpha, \beta \in \Gamma \). We consider the following assumption:

(A) \(x\alpha y\beta z = x\beta y\alpha z \), for all \(x, y, z \in M \) and \(\alpha, \beta \in \Gamma \).

According to the assumption (A), the above two identities reduce to

\[
[x\alpha y, z]_\beta = [x, z]_\beta \alpha y + x\alpha [y, z]_\beta
\]

and \([x, y\alpha z]_\beta = [x, y]_\beta \alpha z + y\alpha [x, z]_\beta\),

which we extensively use. For existence of such a \(\Gamma \)-ring \(M \), we give the following example.

Example 1.1 ([2], Example 1.1) Let \(R \) be an associative ring with the unity element 1. Let \(M = M_{1,2}(R) \) and \(\Gamma = \left\{ \begin{pmatrix} n & 1 \\ 0 & 0 \end{pmatrix} : n \text{ is an integer} \right\} \). Then \(M \) is a \(\Gamma \)-ring. A simple verification shows that \(M \) satisfies the assumption (A).

An additive mapping \(T : M \to M \) is a left(right) centralizer if \(T(x\alpha y) = T(x)\alpha y(T(x\alpha y) = x\alpha T(y)) \) holds for all \(x, y \in M \) and \(\alpha \in \Gamma \). A centralizer is an additive mapping which is both a left and a right centralizer. For any fixed \(a \in M \) and \(\alpha \in \Gamma \), the mapping \(T(x) = a\alpha x \) is a left centralizer and \(T(x) = x\alpha a \) is a right centralizer. We shall restrict our attention on left centralizer, since all results of right centralizers are the same as left centralizers. An additive mapping \(D : M \to M \) is a derivation if \(D(x\alpha y) = D(x)\alpha y + x\alpha D(y) \) holds for all \(x, y \in M \), and \(\alpha \in \Gamma \) and is a Jordan derivation if \(D(x\alpha x) = D(x)\alpha x + x\alpha D(x) \) for all \(x \in M \) and \(\alpha \in \Gamma \). An additive mapping \(T : M \to M \) is Jordan left (right) centralizer if \(T(x\alpha x) = T(x)\alpha x(T(x\alpha x) = x\alpha T(x)) \) for all \(x \in M \) and \(\alpha \in \Gamma \). An additive mappings \(T : M \to M \) is a Jordan centralizer if \(T(x\alpha y + y\alpha x) = T(x)\alpha y + y\alpha T(x) \) for all \(x, y \in M \) and \(\alpha \in \Gamma \).

The main goal of this article is to establish some remarkable results involving \(I \)-involution on \(\Gamma \)-rings.

2 The Main Results

Definition 2.1 Let \(M \) be a \(\Gamma \)-ring. Then the mapping \(I : M \to M \) is called an involution if (i) \(II(a) = a \) (ii) \(I(a + b) = I(a) + I(b) \) (iii) \(I(a\alpha b) = I(b)\alpha I(a) \) for all \(a, b \in M \) and \(\alpha \in \Gamma \).
Example 2.1 Let M be a Γ-ring. Define $M_1 = \{(a, b) : a, b \in M\}$ and $\Gamma_1 = \{ (\alpha, \alpha) : \alpha \in \Gamma \}$. The addition and multiplication on M_1 are defined as follows:

$$(a, b) + (c, d) = (a + c, b + d);$$
and $$(a, b)(\alpha, \alpha)(c, d) = (a\alpha c, d\alpha b).$$

Under these addition and multiplication M_1 is a Γ_1-ring.

Define $I : M_1 \rightarrow M_1$ by $I((a, b)) = (b, a)$. Then

$I((a, b)) = I((b, a)) = (a, b).$

$I((a, b) + (c, d)) = I((a + c, b + d))$
$= (b + d, a + c)$
$= (b, a) + (d, c)$
$= I((a, b) + I((c, d)).$

$I((a, b)(\alpha, \alpha)(c, d)) = I((a\alpha c, d\alpha b))$
$= (d\alpha b, a\alpha c)$
$= (d, c)(\alpha, \alpha)(b, a)$
$= I((c, d))(\alpha, \alpha)I((a, b)).$

Therefore, I is an involution of a Γ_1-ring M_1.

First we need the following Lemmas for proving our main results:

Lemma 2.1 Suppose M is a semiprime Γ-ring with I-involution and satisfying the assumption (A). If there exists an element $a \in M$ such that $a\alpha I(x) = a\alpha x$ holds for all $x \in M$ and $\alpha \in \Gamma$, then $a \in Z(M)$.

Proof. First, we replace x by $I(x)\beta y$ in our condition $a\alpha I(x) = a\alpha x$, we have $a\alpha I(I(x)\beta y) = a\alpha I(x)\beta y \Rightarrow a\alpha I(y)\beta x = a\alpha I(x)\beta y \Rightarrow a\alpha y\beta x = a\alpha x\beta y$. Thus we have $a\alpha [x, y]_\beta = 0$. Taking $y = a$ in this relation, we have $a\alpha [x, a]_\beta = 0$. Hence from Lemma 2.3 in [5], $a \in Z(M)$.

Lemma 2.2 Suppose M is a 2-torsion free semiprime Γ-ring with I-involution and satisfying the assumption (A). Let $a \in M$. If $d : M \rightarrow M$ is a derivation such that $[a, d(x)]_\alpha = 0$ for every $x \in M$ and $\alpha \in \Gamma$, then $a \in Z(M)$.
Proof. Let \(d(x) = [a, x]_\alpha \) for all \(x \in M \) and \(\alpha \in \Gamma \). Then \(d \) is a derivation on \(M \) for, \(d(x\beta y) = [a, x\beta y]_\alpha = x\beta [a, y]_\alpha + [a, x]_\alpha \beta y \), by (A). Hence \(d(x\beta y) = x\beta d(y) + d(x)\beta y \).

Now, \(d^2(x) = d(d(x)) = [a, d(x)]_\alpha = 0 \) by the hypothesis. Since \(d \) is a derivation on \(M \), we have

\[
d^2(x\alpha y) = d(d(x\alpha y)) = d(d(x)\alpha y + x\alpha d(y)) = d^2(x)\alpha y + d(x)\alpha d(y) + d(x)\alpha d(y) + x\alpha d^2(y) = 2d(x)\alpha d(y) + d^2(x)\alpha y + x\alpha d^2(y).
\]

But \(d^2(x\alpha y) = d^2(x) = d^2(y) = 0 \), so, we obtain \(2d(x)\alpha d(y) = 0 \). Since \(M \) is 2-torsion free, \(d(x)\alpha d(y) = 0 \), for every \(x, y \in M \) and \(\alpha \in \Gamma \). Replacing \(y \) by \(m\beta x \), for every \(m \in M \) and \(\beta \in \Gamma \), we have \(d(x)\alpha d(m\beta x) = 0 \Rightarrow d(x)\alpha d(m)\beta x + d(x)\alpha m\beta d(x) = 0 \). Since \(d(x)\alpha d(m) = 0 \), we have \(d(x)\alpha m\beta d(x) = 0 \), for all \(m \in M \) and \(\alpha, \beta \in \Gamma \). Since \(M \) is semiprime, \(d(x) = 0 \). This shows that \([a, x]_\alpha = 0 \), for all \(x \in M \) and \(\alpha \in \Gamma \). Therefore, \(a \in Z(M) \).

Lemma 2.3 Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring with \(I \)-involution and satisfying the assumption (A). Suppose \(d \) be a derivation on \(M \). If \(d(x)\alpha d(y) = 0 \) for all \(x, y \in M \) and \(\alpha \in \Gamma \), then \(d = 0 \).

Proof. The proof is already complete in the above Lemma 2.2.

Theorem 2.1 Suppose \(M \) is a 2-torsion free semiprime \(\Gamma \)-ring with \(I \)-involution and satisfying the assumption (A). Let \(T : M \to M \) be a Jordan left centralizer on \(M \). Then \(T \) is a left centralizer.

Proof. Suppose that \(T \) is a Jordan left centralizer on \(M \). Then we have,

\[
T(x\alpha I(x)) = T(x)\alpha I(x) \tag{1}
\]

If we replace \(x \) by \(x + y \), we obtain

\[
T(x\alpha I(y) + y\alpha I(x)) = T(x)\alpha I(y) + T(y)\alpha I(x) \tag{2}
\]

Replacing \(y \) by \(I(x) \) in the above relation, we have

\[
T(x\alpha x + I(x)\alpha I(x)) = T(x)\alpha x + T(I(x))\alpha I(x) \tag{3}
\]

\[
\Rightarrow T(x\alpha x) - T(x)\alpha x + T(I(x)\alpha I(x)) - T(I(x))\alpha I(x) = 0
\]

\[
\Rightarrow A(x) + A(I(x)) = 0 \tag{4}
\]
where $A(x) = T(x\alpha x) - T(x\alpha x)$ and $A(I(x)) = T(I(x)\alpha I(x)) - T(I(x)\alpha I(x))$.

Putting $y = x\beta I(y) + y\beta I(x)$ in (2) and using (A), we have

\[
T(x\alpha y\beta I(x) + x\beta I(y)\alpha I(x)) = -T(x\alpha x)\beta I(y) + T(x\alpha x)\beta I(x)
+ T(x\beta x\beta I(x) + T(x)\beta I(y)\alpha I(x)
= (T(x\alpha x) - T(x\alpha x)\beta I(y) + T(x\alpha x)\beta I(x)
+ T(x)\beta I(y)\alpha I(x)
\]

\[
T(x\alpha (y + I(y))\beta I(x)) = -A(x)\beta I(y) + T(x)\alpha y\beta I(x) + T(x)\beta I(y)\alpha I(x)
\]

Putting $y = y - I(y)$ in the relation (5) and using (A), we have

\[
T(xy\alpha \beta I(x)) = -A(x)\beta I(y) + T(x)\alpha y\beta I(x)
\]

\[A(x)\beta y = A(x)\beta I(y)\] \hspace{1cm} (6)

Hence from Lemma-2.1, $A(x) \in Z(M)$. Replacing y by $I(y)$ in (2), we have

\[
T(x\alpha y + I(y)\alpha I(x)) = T(x)\alpha y + T(I(y))\alpha I(x)
\]

Putting $y = x\beta y$ in (7), we have

\[
T(x\alpha x\beta y + I(y)\beta I(x)\alpha I(x)) = T(x)\alpha x\beta y + T(I(y))\beta I(x)\alpha I(x)
\]

Putting $x = x\beta x$ in (7), we have

\[
T(x\beta x\alpha y + I(y)\alpha I(x)\beta I(x)) = T(x)\beta x\alpha y + T(I(y))\alpha I(x)\beta I(x)
\]

Subtracting (8) from (9), we obtain

\[
A(x)\beta y + (T(I(y))\alpha I(x) - T(I(y)\alpha I(x)))\beta I(x) = 0
\]

For $y = x$ in (10), we have

\[
A(x)\beta x + (T(I(x))\alpha I(x) - T(I(x)\alpha I(x)))\beta I(x) = 0
\]

\[
\Rightarrow A(x)\beta x - A(I(x))\beta I(x) = 0
\]

Hence, using (4), we obtain

\[
A(x)\beta (x + I(x)) = 0
\] \hspace{1cm} (11)
In particular \(y = x \) in (6), we obtain
\[
A(x)\beta(x - I(x)) = 0 \tag{12}
\]
Hence from (11) and (12), by 2-torsion freeness, we obtain
\[
A(x)\beta x = 0 \tag{13}
\]
Since \(A(x) \in Z(M) \), for all \(x \in M \), we have
\[
x\beta A(x) = 0 \tag{14}
\]
By linearization of (13) gives
\[
A(x)\beta y + A(y)\beta x + B(x,y)\beta x + B(x,y)\beta y = 0 \tag{15}
\]
where \(B(x,y) = T(x\alpha y + y\alpha x) - T(x)\alpha y - T(y)\alpha x \). Putting \(x = -x \) in (15), we have
\[
A(x)\beta y - A(y)\beta x + B(x,y)\beta x - B(x,y)\beta y = 0 \tag{16}
\]
Hence from (15) and (16) and by 2-torsion freeness, we obtain
\[
A(x)\beta y + B(x,y)\beta x = 0 \tag{17}
\]
Right multiplying (17) by \(\alpha A(x) \) and using (14) and (A), we get
\[
A(x)\alpha y \beta A(x) = 0
\]
Thus by semiprimeness of \(M \), we have \(A(x) = 0 \) for all \(x \in M \). i.e., \(T(x\alpha x) = T(x)\alpha x \). Therefore \(T \) is a left centralizer and hence \(T \) is a centralizer because of left-right symmetry.

It is obvious that if \(M \) is an arbitrary \(\Gamma \)-ring with involution and satisfying the assumption (A) and if \(T : M \to M \) is an additive mapping such that \(T(x\alpha I(x) + I(x)\alpha x) = T(x)\alpha I(x) + I(x)\alpha T(x) \) holds for any \(x \in M \) and \(\alpha \in \Gamma \), then \(T \) is a centralizer.

Theorem 2.2 Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring with \(I \)-involution and let \(T : M \to M \) be an additive mapping such that
\[
T(x\alpha I(x) + I(x)\alpha x) = T(x)\alpha I(x) + I(x)\alpha T(x) \tag{18}
\]
holds for \(x \in M \) and \(\alpha \in \Gamma \). If \(M \) has an identity element and \(M \) satisfy the assumption (A), then \(T(x) = a\alpha x \) for any \(x \in M \) and some \(a \in Z(M) \).
Proof. Putting $x = I(x) + e$, where e denotes the identity element, in (18), after some calculation, we obtain

$$2T(x) = a\alpha x + x\alpha a$$

where $a = T(e)$. Replacing x by $x\alpha I(x) + I(x)\alpha x$ in the above relation (19), we have

$$2T(x\alpha I(x) + I(x)\alpha x) = a\alpha(x\alpha I(x) + I(x)\alpha x) + (x\alpha I(x) + I(x)\alpha x)d(\alpha a)$$

Using (19) and (20) in (18) and using (A), we obtain

$$a\alpha I(x)\alpha x + I(x)\alpha x\alpha a = x\alpha a I(x) + I(x)\alpha a\alpha x$$

$$\Rightarrow [[a, I(x)]_\alpha, x]_\alpha = 0$$

$$\Rightarrow [d(I(x)), x]_\alpha = 0$$

(21)

where $d(I(x)) = [a, I(x)]_\alpha$. Linearization of the relation (21) for $x, y \in M$, we have

$$[d(I(x)), y]_\alpha + [d(I(y)), x]_\alpha = 0$$

(22)

Putting $x = I(x)$ in (22), we have

$$[d(x), y]_\alpha + [d(I(y)), I(x)]_\alpha = 0$$

(23)

Putting $y = I(a)$ in (23), we obtain

$$[d(x), I(a)]_\alpha = 0$$

(24)

as $d(x) = [a, x]_\alpha$. Putting $x = x\beta y$ in (24), we have

$$[d(x\beta y), I(a)]_\alpha = 0$$

$$\Rightarrow d(x)\beta [y, I(a)]_\alpha + [x, I(a)]_\alpha \beta d(y) = 0$$

(25)

Replacing y by $z\gamma y$ in (25), we obtain

$$d(x)\beta z\gamma [y, I(a)]_\alpha + [x, I(a)]_\alpha \beta z\gamma d(y) = 0$$

(26)

Putting $x = I(a)$ and $y = a$ in (26), we have

$$d(I(a))\beta z\gamma d(I(a)) = 0$$
Since $z \in M$, hence by semiprimeness of M,

$$d(I(a)) = 0$$ \hspace{1cm} (27)

Replacing y by a in (23) and using (27), we have $[d(x), a]_{\alpha} = 0$, for all $x \in M$ and $\alpha \in \Gamma$, which implies $d^2(x) = 0$, for all $x \in M$. Hence from Lemma 2.3, $d = 0$ and hence $a \in Z(M)$. Since M is 2-torsion free semiprime Γ-ring with involution, (19) gives $T(x) = a\alpha x$ for $x \in M$ and $\alpha \in \Gamma$.

Conclusion

In this study, we have given definition and example which have shown that I-involution exists on Γ-rings. We have proved that if T is an Jordan centralizer on a 2-torsion free semiprime Γ-ring M with I-involution, satisfying the assumption (A), then T is a centralizer. Also we have shown that $T(x) = a\alpha x$ for any $x \in M$ and some $a \in Z(M)$, if T is additive mapping such that $T(xaI(x) + I(x)a\alpha x) = T(x)aI(x) + I(x)aT(x)$ holds for $x \in M$, $\alpha \in \Gamma$ and if M has an identity element and M satisfy the assumption (A).

References

Received: June 21, 2014