Basic Theorem for Generalized One-sided Concept Lattices

Peter Butka

Technical University of Košice, Faculty of Electrical Engineering and Informatics
Department of Cybernetics and Artificial Intelligence
Košice, Slovakia

Jozef Pócs

Palacký University Olomouc
Department of Algebra and Geometry
Olomouc, Czech Republic
and
Mathematical Institute, Slovak Academy of Sciences
Košice, Slovakia

Jana Pócssová

Technical University of Košice, BERG Faculty
Institute of Control and Informatization of Production Processes
Košice, Slovakia

Abstract

The Basic Theorem for Concept Lattices represents one of the fundamental tool for a theoretical study of concept lattices. In this paper the similar assertion for generalized one-sided concept lattices is derived.

Mathematics Subject Classification: 06A15

Keywords: Galois connection, formal context, generalized one-sided concept lattice
1 Introduction

The generalized one-sided concept lattices [4] represent a generalization of one-sided concept lattices, cf. [3, 8], convenient for analysis of object-attribute models with different truth value structures. The main aim of this paper is to present characterization of complete lattices as generalized one-sided concept lattices. As in the other cases, this characterization is given by so-called Basic Theorem on Concept Lattices, cf. [7], [1, 2] or [9]. It provides necessary and sufficient condition on formal context under which the corresponding concept lattice is isomorphic to a given complete lattice. In order to obtain Basic Theorem for generalized one-sided concept lattices we describe a representation of generalized one-sided concept lattices in the framework of FCA. Using this representation we provide a relatively simple proof of our Basic Theorem.

First we briefly recall the basic notions of FCA. Let (G, M, I) be a formal context, i.e., $G, M \neq \emptyset$ and $I \subseteq G \times M$. There is a pair of mappings $\uparrow: \mathcal{P}(G) \rightarrow \mathcal{P}(M)$ and $\downarrow: \mathcal{P}(M) \rightarrow \mathcal{P}(G)$, which forms a Galois connection between power sets of G and M respectively.

$$X^\uparrow = \{y \in G : (x, y) \in I, \forall x \in X\},$$

$$Y^\downarrow = \{x \in M : (x, y) \in I, \forall y \in Y\}.$$

The corresponding concept lattice is denoted by $\mathfrak{B}(G, M, I)$.

There is so-called the Basic Theorem on Concept Lattices, which gives the equivalent conditions for a complete lattice to be isomorphic with a given concept lattice, cf. [7].

Theorem 1.1. A complete lattice V is isomorphic to $\mathfrak{B}(G, M, I)$ if and only if there are mappings $\bar{\gamma}: G \rightarrow V$ and $\bar{\mu}: M \rightarrow V$ such that $\bar{\gamma}(G)$ is supremum-dense in V, $\bar{\mu}(M)$ is infimum-dense in V and $(g, m) \in I$ is equivalent to $\bar{\gamma}(g) \leq \bar{\mu}(m)$ for all $g \in G$ and all $m \in M$.

Next we give a definition of generalized one-sided concept lattice which generalizes the notion of one-sided concept lattice, cf [4]. First we recall the definition of a generalized one-sided formal context.

A 4-tuple (B, A, \mathcal{L}, R) is said to be a generalized one-sided formal context if the following conditions are fulfilled:

i) B is a non-empty set of objects and A is a non-empty set of attributes.

ii) $\mathcal{L}: A \rightarrow \mathcal{CL}$, \mathcal{CL} denotes the class of all complete lattices.

iii) $R: B \times A \rightarrow \bigcup_{a \in A} \mathcal{L}(a)$ is a mapping satisfying $R(b, a) \in \mathcal{L}(a)$ for all $b \in B$ and $a \in A$.
Let us note that for any attribute \(a \), \(\mathcal{L}(a) \) denotes the complete lattice, which represents a lattice structure of truth values for the attribute \(a \). The symbol \(R \) denotes so-called (generalized) incidence relation, where \(R(b, a) \) represents a degree from the structure \(\mathcal{L}(a) \) in which the element \(b \in B \) has the given attribute \(a \).

As in the case of concept lattices, there are concept forming operators which form a Galois connection between \(\mathcal{P}(B) \) and the direct product \(\prod_{a \in A} \mathcal{L}(a) \).

Let \((B, A, \mathcal{L}, R)\) be a generalized one-sided formal context. We define a pair of mappings \(\uparrow : \mathcal{P}(B) \to \prod_{a \in A} \mathcal{L}(a) \) and \(\downarrow : \prod_{a \in A} \mathcal{L}(a) \to \mathcal{P}(B) \) as follows:

\[
\uparrow(X)(a) = \bigwedge_{b \in X} R(b, a), \quad \text{for all } X \subseteq B, \quad (1)
\]

\[
\downarrow(g) = \{ b \in B : \forall a \in A, \ g(a) \leq R(b, a) \}, \quad \text{for all } g \in \prod_{a \in A} \mathcal{L}(a). \quad (2)
\]

With the help of these two operators we can define a set of fixed points

\[\mathfrak{S}(B, A, \mathcal{L}, R) = \{(X, g) : \uparrow(X) = g, \downarrow(g) = X \} \]

Further we define partial order on the set \(\mathfrak{S}(B, A, \mathcal{L}, R) \) as follows:

\[
(X_1, g_1) \leq (X_2, g_2) \iff X_1 \subseteq X_2 \iff g_1 \geq g_2. \quad (3)
\]

The set \(\mathfrak{S}(B, A, \mathcal{L}, R) \) with this partial ordering forms a complete lattice, which is called generalized one-sided concept lattice (see 4 for more details).

As it can be shown, the generalized one-sided concept lattices represent special case of fuzzy concept lattices, cf [10, 11, 12].

2 Main Result

In order to prove the Basic Theorem for generalized one-sided concept lattices, we provide a representation of generalized one-sided concept lattices in the framework of classical concept lattices. Let \((B, A, \mathcal{L}, R)\) be a generalized one-sided formal context and \(J_a \) be a supremum-dense subset of the lattice \(\mathcal{L}(a) \), for all \(a \in A \). We put \(S_a = \{ w_a : w \in J_a \} \) and we define a new set of attributes \(S = \bigcup_{a \in A} S_a \).

Finally, we define an incidence relation \(I \subseteq B \times S \) by

\[
(b, w_a) \in I \quad \text{iff} \quad w \leq R(b, a). \quad (4)
\]

Since both pairs of operators \(\uparrow, \downarrow \) and \(\uparrow, \downarrow \), form Galois connections, the sets \(C_I = \{ Y^\uparrow : Y \subseteq S \} \) and \(C_R = \{ \downarrow(g) : g \in \prod_{a \in A} \mathcal{L}(a) \} \) form closure systems on the set of all objects \(B \). Using similar methods as in [5] and [6] we prove the following result.
Theorem 2.1. Let \((B, S, I)\) be the formal context associated to a generalized one-sided formal context \((B, A, \mathcal{L}, R)\). Then the closure systems \(C_I\) and \(C_R\) on the set of all objects \(B\) are identical.

Proof. First we show that \(C_I \subseteq C_R\). Let \(Y \subseteq S\) be an arbitrary subset. We show that \(Y^\downarrow = \downarrow (g)\) for some \(g \in \prod_{a \in A} \mathcal{L}(a)\). We put \(Y_a = \{w \in J_a : w \in Y\}\).

Next we define \(g : A \to \bigcup_{a \in A} \mathcal{L}(a)\) by \(g(a) = \bigvee Y_a = \bigvee \{w \in J_a : w \in Y\}\).

Obviously \(g(a) \in \mathcal{L}(a)\), thus \(g \in \prod_{a \in A} \mathcal{L}(a)\). According to basic properties of the supremum and the condition (4), for all \(b \in B\) and \(a \in A\) we obtain

\[
g(a) = \bigvee Y_a \leq R(b, a) \iff \{w \in B : \forall a \in A, (b, w_a) \in I, \forall w \in Y_a\}
\]

Since for any fixed element \(b \in B\) holds: \((b, w_a) \in I\) for all \(w_a \in Y\) if and only if for all \(a \in A\), \((b, w_a) \in I\), for all \(w \in Y_a\) we obtain

\[
\downarrow (g) = \{b \in B : \forall a \in A, g(a) \leq R(b, a)\} = \{b \in B : \forall a \in A, (b, w_a) \in I, \forall w \in Y_a\} = \{b \in B : (b, w_a) \in I, \forall w \in Y\} = Y^\downarrow.
\]

Hence for any \(Y \subseteq S\) we have \(Y^\downarrow \subseteq C_R\), which yields \(C_I \subseteq C_R\).

Conversely, we show the opposite inclusion. Let \(g \in \prod_{a \in A} \mathcal{L}(a)\) be an arbitrary element. Since the set \(J_a\) is supremum-dense in \(\mathcal{L}(a)\) for each \(a \in A\) we can express an element \(g(a)\) as \(g(a) = \bigvee Y_a\) for some subset \(Y_a \subseteq J_a\). We put \(Y = \bigcup_{a \in A} \{w_a : w \in Y_a\}\).

As in the previous case we obtain for all \(b \in B\) and all \(a \in A\)

\[
g(a) \leq R(b, a) \iff (b, w_a) \in I, \forall w \in Y_a,
\]

which yields \(\downarrow (g) = Y^\downarrow\). This gives \(C_R \subseteq C_I\), what completes the proof. \(\square\)

Since any closure system on the set of objects uniquely determines the order structure of the corresponding concept lattices, we obtain that \(\mathcal{G}(B, A, \mathcal{L}, R)\) and \(\mathcal{G}(B, S, I)\) are isomorphic.

Now we can provide the characterization of generalized one-sided concept lattices.

Theorem 2.2. Let \((B, A, \mathcal{L}, R)\) be a generalized one-sided formal context and for all \(a \in A\) \(J_a\) denotes a supremum-dense subset of \(\mathcal{L}(a)\). A complete lattice \(V\) is isomorphic to \(\mathcal{G}(B, A, \mathcal{L}, R)\) if and only if there is a mapping \(\gamma : B \to V\) and for all \(a \in A\) there are mappings \(\mu_a : J_a \to V\) such that \(\gamma(B)\) is supremum-dense in \(V\), \(\bigcup_{a \in A} \mu_a(J_a)\) is infimum-dense in \(V\) and for all \(b \in B\), \(a \in A\) and \(w \in J_a\) condition \(w \leq R(b, a)\) is equivalent to \(\gamma(b) \leq \mu(w)\).
Proof. Let \((B, A, \mathcal{L}, R)\) be a generalized one-sided formal context, for each \(a \in A\), \(J_a\) be a supremum-dense subset of the lattice \(\mathcal{L}(a)\) and \(V\) be a complete lattice such that \(V \cong \mathfrak{C}(B, A, \mathcal{L}, R)\). According to the Theorem 2.1, the lattice \(\mathfrak{C}(B, A, \mathcal{L}, R)\) is isomorphic to the concept lattice \(\mathfrak{B}(B, S, I)\) where \(S = \bigcup_{a \in A} \{w_a : w \in J_a\}\) and \(w \leq R(b, a)\) if and only if \((b, w_a)\) \(\in I\). Consequently, \(\mathfrak{B}(B, S, I) \cong V\) and we are able to use Theorem 1.1. There are mappings \(\gamma : B \to V\) and \(\mu : S \to V\) such that \(\gamma(B)\) is supremum-dense in \(V\), \(\mu(G)\) is infimum-dense in \(V\) and \((g, m) \in I\) is equivalent to \(\gamma(g) \leq \mu(m)\) for all \(g \in G\) and all \(m \in M\). Hence we define \(\gamma : B \to V\) as \(\gamma(b) = \gamma(b)\) for all \(b \in B\) and we define for all \(a \in A\) mappings \(\mu_a : J_a \to V\) as \(\mu_a(w_a) = \mu(w_a)\). Evidently, \(\gamma(B)\) is supremum-dense in \(V\), as well as \(\bigcup_{a \in A} \mu(J_a) = \mu(S)\) is infimum-dense in \(V\). From the condition (4) we obtain for all \(b \in B\), for all \(a \in A\) and for all \(w \in J_a\)

\[
w \leq R(b, a) \iff (b, w_a) \in I \iff \gamma(b) \leq \mu(w_a) \iff \gamma(b) \leq \mu_a(w).
\]

Conversely, assume that there are mappings \(\gamma : B \to V\) and \(\mu_a : J_a \to V\) for all \(a \in A\), satisfying condition of Theorem 2.2. Under the same representation of \(\mathfrak{C}(B, A, \mathcal{L}, R)\) as \(\mathfrak{B}(B, S, I)\), we show that \(V \cong \mathfrak{B}(B, S, I)\).

We define \(\gamma(b) = \gamma(b)\) for all \(b \in B\) and we define \(\mu(w_a) = \mu_a(w)\) for all \(a \in A\) and for all \(w \in J_a\). Again \(\gamma(B)\) is supremum-dense in \(V\) and \(\mu(S) = \bigcup_{a \in A} \mu(J_a)\) is infimum dense in \(V\). Moreover for all \(b \in B\), \(a \in A\) and for all \(w \in J_a\)

\[
(b, w_a) \in I \iff w \leq R(b, a) \iff \gamma(b) \leq \mu_a(w) \iff \gamma(b) \leq \mu(w_a),
\]

hence, due to Theorem 2.1 and Theorem 1.1, we obtain \(\mathfrak{C}(B, A, \mathcal{L}, R) \cong \mathfrak{B}(B, S, I) \cong V\).

\[\square\]

Acknowledgment

This work was partially supported by the Slovak Research and Development Agency under contracts APVV-0208-10, APVV-0035-10 and APVV-0482-11; by the Slovak VEGA Grants 1/1147/12, 2/0028/13 and 1/0729/12; by the ESF Fund CZ.1.07/2.3.00/30.0041.

References

Received: November 25, 2013