Rw-Connectedness and rw-Sets
in the Product Space

Philip Lester P. Benjamin and Helen M. Rara

Department of Mathematics
Mindanao State University Iligan Institute of Technology
Tibanga, Iligan city, Philippines

Abstract

In this paper, the concept of rw-connectedness and rw-sets in the product space is studied. Specifically, this paper characterized rw-connectedness in terms of rw-open and rw-closed sets and rw-continuous functions. This also established some results involving regular open, regular semiopen, rw-interior, and rw-closed sets in the product of subsets of a topological space.

Mathematics Subject Classification: 54A05

Keywords: rw-open functions, rw-closed functions, rw-connectedness

1 Introduction

In 1937, Stone [6] introduced and investigated the regular open sets. These sets are contained in the family of open sets since a set is regular open if it is equal to the interior of its closure. In 1978, Cameron [2] also introduced and investigated the concept of a regular semiopen set. A set \(A \) is regular semiopen if there is a regular open set \(U \) such that \(U \subseteq A \subseteq \overline{U} \). In 2007, a new class of sets called regular \(w \)-closed sets (\(rw \)-closed sets) was introduced by Benchalli

\[1\] This research is funded by the Department of Science and Technology-Philippine Council for Advanced Science and Technology Research and Development (DOST-PCASTRD).
and Wali [1]. A set B is rw-closed if $\bar{B} \subseteq U$ whenever $B \subseteq U$ for any regular semiopen set U. They proved that this new class of sets is properly placed in between the class of w-closed sets [5] and the class of regular generalized closed sets [4].

In this paper, the concepts of rw-connectedness and rw-open sets in the product space are further investigated.

Throughout this paper, space (X, T) (or simply X) always means a topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, \overline{A}, $\text{int}(A)$, and $C(A)$ denote the closure of A, interior of A, and complement of A in X, respectively.

2 Preliminaries

Definition 2.1 [1] A function $f : X \to Y$ is called

(i) rw-open if the image $f(A)$ is rw-open in Y for each open set A in X.

(ii) rw-closed if the image $f(A)$ is rw-closed for each closed set A in X.

(iii) rw-continuous if for every open subset U of Y, $f^{-1}(U)$ is rw-open in X.

(iv) regular strongly continuous (briefly rs-continuous) if the inverse image of every rw-open set in Y is open in X, that is, $f^{-1}(A)$ is open in X for all rw-open sets A in Y.

3 rw-connectedness

Definition 3.1 A space (X, T) is rw-connected if it is not the union of two nonempty disjoint rw-open sets. Otherwise, a space (X, T) is rw-disconnected. A subset A of a topological space is rw-connected if it is rw-connected as a subspace of X.

Remark 3.2 A space (X, T) is rw-disconnected if there exist a disjoint nonempty rw-open sets A and B such that $X = A \cup B$. The set $A \cup B$ is called the rw-decomposition of X.

Theorem 3.3 Let X be any space and let $\chi_A : X \to 2$ be the characteristic function of a subset A of X. Then χ_A is rw-continuous if and only if A is both rw-open and rw-closed.

Proof: Suppose that χ_A is rw-continuous. Let $O_1 = \{1\}$ and $O_2 = \{0\}$. Then O_1 and O_2 are open in $\{0, 1\}$. Since χ_A is rw-continuous, $\chi_A^{-1}(O_1) = A$ and $\chi_A^{-1}(O_2) = C(A)$ are rw-open sets in X. Thus, A is both rw-open and rw-closed.
Conversely, let A be both rw-open and rw-closed in X. Let O be an open set in $\{0, 1\}$. Then

$$\chi_A^{-1}(O) = \begin{cases} \emptyset & \text{if } O = \emptyset \\ X & \text{if } O = \{0, 1\} \\ A & \text{if } O = \{1\} \\ C(A) & \text{if } O = \{0\}. \end{cases}$$

It means that $\chi_A^{-1}(O)$ is rw-open. Therefore, χ_A is rw-continuous. \qed

Theorem 3.4 Let (X, T) be a topological space. Then the following statements are equivalent:

(a) X is rw-connected.

(b) The only subsets of X both rw-open and rw-closed are \emptyset and X.

(c) No rw-continuous function $f : X \to 2$ is surjective, where 2 is the space $\{0, 1\}$ with the discrete topology.

Proof: (a) \Rightarrow (b) Let G be both rw-open and rw-closed set in X and suppose that $G \neq \emptyset, X$. Then $G \cup C(G)$ is an rw-decomposition of X. It follows that X is not rw-connected. Thus, the only subsets of X both rw-open and rw-closed are \emptyset and X.

(b) \Rightarrow (c) Suppose that $f : X \to 2$ is rw-continuous and surjective. Then $f^{-1}(\{0\}) \neq \emptyset, X$. Since $\{0\}$ is both open and closed in 2, $f^{-1}(\{0\})$ is both rw-open and rw-closed. This is a contradiction to our hypothesis. Thus, no rw-continuous function $f : X \to 2$ is surjective.

(c) \Rightarrow (a) Suppose that X is rw-disconnected. Then $X = A \cup B$, where A and B are disjoint nonempty rw-open sets. It follows that A and B are also rw-closed sets in X. Now, consider the characteristic function χ_A. By Theorem 3.3, χ_A is rw-continuous and surjective. This contradicts our assumption. Therefore, A is rw-connected. \qed

Theorem 3.5 Every rw-connected space is connected.

Proof: Suppose that a space X is rw-connected and X is not connected. Then there exist two nonempty disjoint open sets O_1 and O_2 such that $X = O_1 \cup O_2$. Thus X is also the union of two nonempty disjoint rw-open sets. Thus, X is not rw-connected which is a contradiction. Therefore, X is connected. \qed

Remark 3.6 The converse of Theorem 3.5 is not true.
To see this, consider the space \((X,T)\) where \(X = \{a,b,c\}\) and
\(T = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}.\) Then the possible decomposition of \(X\) is
\(\{a,b\} \cup \{c\}\) but \(\{c\}\) is not open. Thus, \(X\) is connected. The rw-open sets
in \(X\) are \(X, \emptyset, \{a\}, \{b\}, \{c\},\) and \(\{a,b\}\). Now, \(X = \{a,b\} \cup \{c\}\) implying that
\(X\) is rw-disconnected.

Theorem 3.7 The rw-continuous image of an rw-connected set is connected.

Proof: Let \(X\) be an rw-connected set and let \(f : X \to f(X)\) be an
rw-continuous function. Suppose that \(f(X)\) is disconnected. Then by there
exists a continuous surjection \(g : f(X) \to 2.\) Hence,
g \circ f : X \to 2 is an rw-continuous surjection which is a contradiction to
Theorem 3.4. Therefore, \(f(X)\) is connected. \(\Box\)

4 **rw-sets in the Product Space**

Throughout this section, let \(\{Y_\alpha| \alpha \in A\}\) be family of topological spaces,
\(\prod\{Y_\alpha| \alpha \in A\}\) be the cartesian product space, \(A_i\) and \(B_i\) are subsets of \(Y_i.\)

Theorem 4.1 If \(A\) and \(B\) are subsets of \(X\) with \(A \subseteq B,\) then rw-(\(A\)) \(\subseteq\) rw-(\(B\)).

Lemma 4.2 \(\prod_{i=1}^{n} B_i\) is regular open if and only if \(B_i\) is regular open for every
\(i = 1, 2, ..., n.\)

Proof: Let \(\prod_{i=1}^{n} B_i\) be a regular open set. Then

\[
\text{int}\left(\prod_{i=1}^{n} B_i\right) = \text{int}\left(\prod_{i=1}^{n} B_i\right) = \prod_{i=1}^{n} \text{int}(B_i) = \prod_{i=1}^{n} B_i.
\]

Therefore, \(\text{int}(B_i) = B_i.\) Hence, \(B_i\) is regular open.
The converse is proved similarly. \(\Box\)

Lemma 4.3 If \(A_i\) is regular semiopen for every \(i = 1, 2, ..., n,\) then \(\prod_{i=1}^{n} A_i\) is
regular semiopen.
Proof: Let A_i be regular semiopen for every $i = 1, 2, ..., n$. Then there exists a regular open U_i such that $U_i \subseteq A_i \subseteq \overline{U_i}$. By Theorem 4.2, $\prod_{i=1}^{n} U_i$ is regular open and

$$\prod_{i=1}^{n} U_i \subseteq \prod_{i=1}^{n} A_i \subseteq \prod_{i=1}^{n} U_i = \prod_{i=1}^{n} U_i.$$ Therefore $\prod_{i=1}^{n} A_i$ is regular semiopen. \hfill \Box

Remark 4.4 If A is regular open (regular semiopen) in $\prod_{i=1}^{n} Y_i$, then A is not necessarily a cartesian product of regular open (regular semiopen) sets in Y_i.

Lemma 4.5 If $\prod_{i=1}^{n} F_i$ is rw-closed in $\prod_{i=1}^{n} X_i$, then F_i is rw-closed in X_i for every $i = 1, 2, ..., n$.

Proof: Suppose that $\prod_{i=1}^{n} F_i$ is rw-closed in $\prod_{i=1}^{n} X_i$ and let $F_i \subseteq U_i$ where U_i is regular semiopen. Then $\prod_{i=1}^{n} F_i \subseteq \prod_{i=1}^{n} U_i$. Since $\prod_{i=1}^{n} F_i$ is rw-closed and $\prod_{i=1}^{n} U_i$ is regular semiopen by Lemma 4.3, $\prod_{i=1}^{n} F_i \subseteq \prod_{i=1}^{n} U_i$. But $\prod_{i=1}^{n} F_i = \prod_{i=1}^{n} F_i \subseteq \prod_{i=1}^{n} U_i$ implies that $\overline{F_i} \subseteq U_i$ for every $i = 1, 2, ..., n$. Therefore, F_i is rw-closed for every $i = 1, 2, ..., n$. \hfill \Box

Lemma 4.6 $rw\text{-}int}(A) = C(rw\text{-}(C(A))).$

Proof:

$$x \in rw\text{-}int(A) \iff x \in O \text{ for some } rw\text{-}open \text{ set } O \text{ with } O \subseteq A \iff x \notin C(O) \text{ for some } rw\text{-}closed \text{ set } C(O) \text{ with } C(A) \subseteq C(O) \iff x \notin rw\text{-}(C(A)) \iff x \in C(rw\text{-}(C(A))).$$

This completes the proof. \hfill \Box

Lemma 4.7 $rw\text{-}int}(A) = C(rw\text{-}(C(A))).$
Proof:

\[x \in \text{rw-int}(A) \iff x \in O \text{ for some } \text{rw-open set } O \text{ with } O \subseteq A \]
\[\iff x \notin C(O) \text{ for some } \text{rw-closed set } C(O) \]
\[\quad \text{with } C(A) \subseteq C(O) \]
\[\iff x \notin \text{rw-}(C(A)) \]
\[\iff x \in C(\text{rw-}(C(A))) \]

This completes the proof. \(\square\)

Theorem 4.8 \(\text{rw-int} \left(\prod_{i=1}^{n} A_i \right) = \prod_{i=1}^{n} \text{rw-int}(A_i)\).

Proof: By Lemma 4.7, and Theorem 4.1,

\[
\text{rw-int} \left(\prod_{i=1}^{n} A_i \right) = C \left(\text{rw-} \left(C(\prod_{i=1}^{n} A_i) \right) \right) \\
= C \left(\text{rw-} \left(\bigcup_{i=1}^{n} (C(A_i)) \right) \right) \\
= C \left(\bigcup_{i=1}^{n} \text{rw-}(C(A_i)) \right) \\
= \bigcap_{i=1}^{n} C(\text{rw-}(C(A_i))) \\
= \bigcap_{i=1}^{n} \langle C(\text{rw-}(C(A_i))) \rangle \\
= \bigcap_{i=1}^{n} \langle \text{rw-int}(A_i) \rangle \\
= \prod_{i=1}^{n} \text{rw-int}(A_i). \quad \square
\]

References

Received: May 15, 2014