Multiple q-Tangent Zeta Functions
and q-Tangent Polynomials

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Copyright © 2014 C. S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In this paper, we introduce the q-Tangent polynomials $T_{n,q}^{(k)}(x)$ of higher order k. We also construct multiple q-Tangent zeta function which interpolates the q-Tangent numbers $T_{n,q}^{(k)}(x)$ of higher order k at negative integers. Some interesting results and relationships are obtained.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: Tangent numbers and polynomials, q-Tangent polynomials $T_{n,q}^{(k)}(x)$ of higher order k, multiple q-Tangent zeta functions

1 Introduction
Throughout this paper, we always make use of the following notations: \mathbb{N} denotes the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$, \mathbb{C} denotes the set of complex numbers, \mathbb{Z}_p denotes the ring of p-adic rational integers, \mathbb{Q}_p denotes the field of p-adic rational numbers, and \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$ one normally assume that $|q| < 1$. If $q \in \mathbb{C}_p$, we normally assume that $|q - 1|_p < p^{-\nu_p(p)}$, so that $= \exp(x \log q)$ for $|x|_p \leq 1$. For

\[g \in UD(\mathbb{Z}_p) = \{g \mid g : \mathbb{Z}_p \rightarrow \mathbb{C}_p \text{ is uniformly differentiable function}\}, \]
the fermionic \(p \)-adic invariant integral on \(\mathbb{Z}_p \) is defined by Kim as follows:

\[
I_{-1}(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{0 \leq x < p^N} g(x)(-1)^x, \quad (\text{see}[4]). (1.1)
\]

If we take \(g_1(x) = g(x + 1) \) in (1.1), then we see that

\[
I_{-1}(g_1) + I_{-1}(g) = 2g(0), \quad (\text{see}[4-5]). (1.2)
\]

From (1.1), we obtain

\[
\int_{\mathbb{Z}_p} g(x + n) d\mu_{-1}(x) = (-1)^n \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x) + 2 \sum_{l=0}^{n-1} (-1)^{n-1-l} g(l). (1.3)
\]

Let us define the \(q \)-tangent numbers \(T_{n,q} \) and polynomials \(T_{n,q}(x) \) as follows(see [8]):

\[
I_{-1}(q^y e^{2yt}) = \int_{\mathbb{Z}_p} q^y e^{2yt} d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_{n,q} \frac{t^n}{n!} , \quad (1.4)
\]

\[
I_{-1}(q^y e^{(2y + x)t}) = \int_{\mathbb{Z}_p} q^y e^{(x + 2y)t} d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_{n,q}(x) \frac{t^n}{n!} . \quad (1.5)
\]

By (1.4) and (1.5), we obtain the following Witt’s formula.

Theorem 1.1 ([8]) For \(n \in \mathbb{Z}_+ \), we have

\[
\int_{\mathbb{Z}_p} q^x (2x)^n d\mu_{-1}(x) = T_{n,q},
\]

\[
\int_{\mathbb{Z}_p} q^y (x + 2y)^n d\mu_{-1}(y) = T_{n,q}(x).
\]

Numerous properties of tangent number are known. Many mathematicians have studied in the area of the analogues of the Bernoulli numbers, Euler numbers, and Genocchi numbers(see [1-10]). Our aim in this paper is to define the \(q \)-Tangent polynomials \(T_{n,q}^{(k)}(x) \) of higher order \(k \). We also derive the existence of a specific interpolation function which interpolate \(q \)-Tangent polynomials \(T_{n,q}^{(k)}(x) \) of higher order \(k \) at negative integers.

2 \(q \)-Tangent polynomials of higher order

In this section, we assume that \(q \in \mathbb{C}_p \). We use the notation

\[
\sum_{k_1=0}^m \ldots \sum_{k_n=0}^m = \sum_{k_1,\ldots,k_n=0}^m .
\]
Now, using multiple of \(p\)-adic integral, we introduce the \(q\)-Tangent polynomials of higher order \(T_{n,q}^{(k)}(x)\): For \(k \in \mathbb{N}\), we define
\[
\sum_{n=0}^{\infty} T_{n,q}^{(k)}(x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{x_1 + \ldots + x_k + x_1 \cdots x_k t} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k).
\]

By using Taylor series of \(e^{(x+2x_1 + \ldots + 2x_k)t}\) in the above equation, we obtain
\[
\sum_{n=0}^{\infty} \left(\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{x_1 + \ldots + x_k} (x + 2x_1 + \ldots + 2x_k)^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k) \right) \frac{t^n}{n!} = \sum_{n=0}^{\infty} T_{n,q}^{(k)}(x) \frac{t^n}{n!}
\]

By comparing coefficients of \(\frac{t^n}{n!}\) in the above equation, we arrive at the following theorem.

Theorem 2.1 For positive integers \(n, k\), we have
\[
T_{n,q}^{(k)}(x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{x_1 + \ldots + x_k} (x + 2x_1 + \ldots + 2x_k)^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k).
\]

By (1.4), the \(q\)-Tangent polynomials of higher order, \(T_{n,q}^{(k)}(x)\) are defined by means of the following generating function
\[
F_{q}^{(k)}(x, t) = \left(\frac{2}{qe^{2t} + 1} \right)^k e^{xt} = \sum_{n=0}^{\infty} T_{n,q}^{(k)}(x) \frac{t^n}{n!}, \quad (2.1)
\]

It follows from (2.1) that
\[
\lim_{q \to 1} F_{q}^{(k)}(x, t) = \left(\frac{2e^t}{e^{2t} + 1} \right)^k e^{xt}.
\]

This gives a generating function of the Tangent polynomials of higher order. Thus we have the following limit relationship:
\[
\lim_{q \to 1} T_{n,q}^{(k)}(x) = T_{n}^{(k)}(x),
\]

which yields the Tangent polynomials of higher order as a limit as \(q\) approaches 1 (see [6]).

By using (2.1), the \(q\)-Tangent numbers of higher order, \(T_{n,q}^{(k)}\) are defined by the following generating function
\[
\left(\frac{2}{qe^{2t} + 1} \right)^k = \sum_{n=0}^{\infty} T_{n,q}^{(k)} \frac{t^n}{n!}, \quad |2t + \log q| < \pi. \quad (2.2)
\]
When $k = 1$, above (2.1) and (2.2) will become the corresponding definitions of the q-Tangent polynomials $T_{n,q}(x)$ and the q-Tangent numbers $T_{n,q}$ (see [8]). Observe that for $x = 0$, the equation (2.1) reduces to (2.2).

Corollary 2.2 For positive integers n, k, we have

$$T^{(k)}_{n,q} = \int_{\mathbb{Z}_p} \ldots \int_{\mathbb{Z}_p} q^{x_1 + \ldots + x_k}(2x_1 + \ldots + 2x_k)^n d\mu_{-1}(x_1) \ldots d\mu_{-1}(x_k).$$

By using binomial expansion in Theorem 2.1, we obtain

$$T^{(k)}_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} \int_{\mathbb{Z}_p} \ldots \int_{\mathbb{Z}_p} q^{x_1 + \ldots + x_k}(2x_1 + \ldots + 2x_k)^l d\mu_{-1}(x_1) \ldots d\mu_{-1}(x_k).$$

By Corollary 2.2, we arrive at the following theorem.

Theorem 2.3 For positive integers n, k, we have

$$T^{(k)}_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} T^{(k)}_{l,q}.$$

We define distribution relation of the q-Tangent polynomials of higher order as follows: For $m \in \mathbb{N}$ with $m \equiv 1 \pmod{2}$, we obtain

$$\sum_{n=0}^{\infty} T^{(k)}_{n,q}(x) \frac{t^n}{n!} = \left(\frac{2}{qe^{2t} + 1} \right) \left(\frac{2}{qe^{2t} + 1} \right) \ldots \left(\frac{2}{qe^{2t} + 1} \right) e^{xt}$$

$$= \left(\frac{2}{qe^{2mt} + 1} \right)^k \sum_{a_1, \ldots, a_k=0}^{m-1} (-q)^{a_1 + \ldots + a_k} e^{\frac{2a_1 + \ldots + 2a_k + x}{m}} (mt)^n.$$

From the above, we obtain

$$\sum_{n=0}^{\infty} T^{(k)}_{n,q}(x) \frac{t^n}{n!} = \sum_{a_1, \ldots, a_k=0}^{m-1} (-q)^{a_1 + \ldots + a_k} \sum_{n=0}^{\infty} T^{(k)}_{n,q} \left(\frac{2a_1 + \ldots + 2a_k + x}{m} \right) (mt)^n \frac{t^n}{n!}.$$

By comparing coefficients of $\frac{t^n}{n!}$ in the above equation, we arrive at the following theorem.

Theorem 2.4 (Distribution relation of the q-Tangent polynomials of higher order). For $m \in \mathbb{N}$ with $m \equiv 1 \pmod{2}$, we have

$$T^{(k)}_{n,q}(x) = m^n \sum_{a_1, \ldots, a_k=0}^{m-1} (-q)^{a_1 + \ldots + a_k} T^{(k)}_{n,q} \left(\frac{2a_1 + \ldots + 2a_k + x}{m} \right).$$
By (2.1), we have
\[
\sum_{n=0}^{\infty} T_{n,q}^{(k)}(x) \frac{t^n}{n!} = 2^k \sum_{a_1, \ldots, a_k = 0}^{\infty} (-q)^{a_1 + \ldots + a_k} e^{(2a_1 + \ldots + 2a_k + x)t} \sum_{m=0}^{\infty} \left(\frac{m + k - 1}{m} \right) (-1)^m q^m e^{(2m + x)t}.
\] (2.3)

From the above, we obtain
\[
\sum_{n=0}^{\infty} T_{n,q}^{(k)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{a_1, \ldots, a_k = 0}^{\infty} (-q)^{a_1 + \ldots + a_k} (x + 2a_1 + \ldots + 2a_k)^n \right) \frac{t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} \left(\frac{m + k - 1}{m} \right) (-1)^m q^m (2m + x)^n \right) \frac{t^n}{n!}
\]

By comparing coefficients of \(\frac{t^n}{n!} \) in the above equation, we arrive at the following theorem.

Theorem 2.5 For positive integers \(n, k \), we have
\[
T_{n,q}^{(k)}(x) = 2^k \sum_{a_1, \ldots, a_k = 0}^{\infty} (-q)^{a_1 + \ldots + a_k} (2a_1 + \ldots + 2a_k + x)^n \sum_{m=0}^{\infty} \left(\frac{m + k - 1}{m} \right) (-1)^m q^m (2m + x)^n.
\] (2.4)

By definition of the \(q \)-Tangent polynomials of higher order, we have the following addition theorem.

Theorem 2.6 (Addition theorem of the \(q \)-Tangent polynomials of higher order). For \(k \in \mathbb{N} \), we have
\[
T_{n,q}^{(k)}(x + y) = \sum_{l=0}^{n} \binom{n}{l} T_{l,q}^{(k)}(x) y^{n-l}.
\]

3 Multiple \(q \)-Tangent zeta function

In this section, we assume that \(q \in \mathbb{C} \) with \(|q| < 1 \). We define multiple \(q \)-Tangent zeta function. This function interpolates the \(q \)-Tangent numbers of higher order at negative integers. By using (2.1), we have
\[
F_q^{(k)}(x, t) = 2^k \sum_{a_1, \ldots, a_k = 0}^{\infty} (-q)^{a_1 + \ldots + a_k} e^{(2a_1 + \ldots + 2a_k + x)t} = \sum_{n=0}^{\infty} T_{n,q}^{(k)}(x) \frac{t^n}{n!}.
\]
For \(s, x \in \mathbb{C} \) with \(\text{Re}(x) > 0 \), we can derive the following Eq. (3.1) form the Mellin transformation of \(F_q^{(k)}(x, t) \).

\[
\frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} F_q^{(k)}(x, -t) dt = 2^k \sum_{a_1, \ldots, a_k = 0}^{\infty} \frac{(-1)^{a_1 + \cdots + a_k} q^{a_1 + \cdots + a_k}}{(2a_1 + \cdots + 2a_k + x)^s} \tag{3.1}
\]

For \(s, x \in \mathbb{C} \) with \(\text{Re}(x) > 0 \), we define Hurwitz’s type multiple \(q \)-Tangent zeta function as follows:

Definition 3.1 For \(s, x \in \mathbb{C} \) with \(\text{Re}(x) > 0 \), we define

\[
\zeta_q^{(k)}(s, x) = 2^k \sum_{a_1, \ldots, a_k = 0}^{\infty} \frac{(-1)^{a_1 + \cdots + a_k} q^{a_1 + \cdots + a_k}}{(2a_1 + \cdots + 2a_k + x)^s}, \tag{3.2}
\]

For \(s = -l \) in (3.2) and using (2.4), we arrive at the following theorem.

Theorem 3.2 For positive integer \(l \), we have

\[
\zeta_q^{(k)}(-l, x) = T_{l,q}^{(k)}(x). \tag{3.3}
\]

By (3.3), we define multiple \(q \)-Tangent zeta function as follows:

Definition 3.3 For \(s \in \mathbb{C} \), we define

\[
\zeta_q^{(k)}(s) = 2^k \sum_{m=1}^{\infty} \binom{m+k-1}{m} (-1)^m q^m (2m)^s. \tag{3.4}
\]

The function \(\zeta_q^{(k)}(s) \) interpolates the number \(T_{n,q}^{(k)} \) at negative integers. Substituting \(s = -n \) with \(n \in \mathbb{Z}_+ \) into (3.4), and using (3.3), we obtain the following theorem:

Theorem 3.4 Let \(n \in \mathbb{Z}_+ \), We have

\[
\zeta_q^{(k)}(-n) = E_{n,q}^{(k)}. \tag{3.5}
\]

Acknowledgment This paper has been supported by the 2014 Hannam University Research Fund.

References

Received: May 5, 2014