Uniqueness of Difference Polynomials of Entire Functions

Renukadevi S. Dyavanal and Rajalaxmi V. Desai

Department of Mathematics, Karnatak University
Dharwad - 580003, India

Copyright © 2014 Renukadevi S. Dyavanal and Rajalaxmi V. Desai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study the uniqueness of difference polynomials of entire functions \(f \) and \(g \) and a small function \(\alpha \). The result improves the result of J. Zhang[13].

Mathematics Subject Classification: 30D35, 39A05

Keywords: Nevanlinna theory, Entire functions, Difference functions, Sharing value, Uniqueness

1. Introduction and results

In this paper, the term "meromorphic" will always mean meromorphic in the complex plane \(\mathbb{C} \). We shall use the standard notation in Nevanlinna’s value distribution theory of meromorphic functions ([12]). We use notations \(\sigma(f) \) and \(\lambda(f) \) for the order and the exponent of convergence of zeros of \(f(z) \) respectively. Set \(E(a, f) = \{ z : f(z) - a = 0 \} \), where a zero point with multiplicity \(m \) is counted \(m \) times in the set. If these zero points are only counted once, then we denote the set by \(\overline{E}(a, f) \). Let \(f(z) \) and \(g(z) \) be two meromorphic functions. If \(E(a, f) = E(a, g) \), then we say that \(f(z) \) and \(g(z) \) share the value \(a \) CM; if \(\overline{E}(a, f) = \overline{E}(a, f) \), then we say that \(f(z) \) and \(g(z) \) share the value \(a \) IM.

Let \(k \) be a positive integer and \(a \in \mathbb{C} \cup \{ \infty \} \). We denote by \(N_k(r, 1/(f - a)) \) the counting function of \(a \)-points of \(f \) with multiplicity \(\leq k \), by \(N_k(r, 1/(f - a)) \)
the counting function of a-points of f with multiplicity $\geq k$; and denote the reduced counting function by $\overline{N}_k(r,1/(f-a))$, $\overline{N}(r,1/(f-a))$, respectively. Set $N_k(r,1/(f-a))/\overline{N}(r,1/(f-a))$. Recently, value distribution of difference analogues of meromorphic functions and application of Value Distribution Theory to differential equations has become a subject of great importance ([1], [2], [7],[8],[10], [3], [6]).

In 2007, Laine and Yang [9] proved the following result.

Theorem 1.A. Let f be a transcendental entire function of finite order and c be a non-zero complex constant. Then for $n \geq 2$, $f^n(z) f(z+c)$ assumes every non-zero value $a \in \mathbb{C}$ infinitely often.

In 2010, J.Zhang [13] proved the following analogue results in difference.

Theorem 1.B. Let $f(z)$ be a transcendental entire function of finite order, and $\alpha(z)$ be a small function with respect to $f(z)$. Suppose that c is a non-zero complex constant and n is an integer. If $n \geq 2$, then $f^n(z)(f(z)−1)f(z+c)−\alpha(z)$ has infinitely many zeros.

Theorem 1.C. Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that c is a non-zero complex constant. $n \geq 7$, if $f^n(z)(f(z)−1)f(z+c)$ and $g^n(z)(g(z)−1)g(z+c)$ share $\alpha(z)$ CM, then $f(z)\equiv g(z)$.

In the present paper, we consider the difference polynomials of entire functions of the form $f^n(z)(f(z)−1)^kf(z+c)$ and prove the following theorems.

Theorem 1.1. Let $f(z)$ be a transcendental entire function of finite order, and $\alpha(z)$ be a small function with respect to $f(z)$. Suppose that c is a non-zero complex constant and n is an integer. If $n \geq 2$, $k \geq 1$ then $f^n(z)(f(z)−1)^kf(z+c)−\alpha(z)$ has infinitely many zeros.

Theorem 1.2. Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha(z)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that c is a non-zero complex constant. $k \geq 1$, $n \geq k+6$, if $f^n(z)(f(z)−1)^kf(z+c)$ and $g^n(z)(g(z)−1)^kg(z+c)$ share $\alpha(z)$ CM, then $f(z)\equiv t g(z)$, where $t^k = 1$.

2. Some preliminary results

To prove our theorems we require the following Lemmas.

As mentioned in Section 1, Halburd and Korhonen [7] and Chiang and Feng [2] investigated the value distribution theory of difference expressions. A key result, which is a difference analogue of the logarithmic derivative lemma, read as follows.
Lemma 2.1. [2, 7] Let f be a meromorphic function of finite order and c is a nonzero complex constant. Then
\[m \left(r, \frac{f(z) + c}{f(z)} \right) + m \left(r, \frac{f(z)}{f(z) + c} \right) = S(r, f) \]

Lemma 2.2. [2] Let f be a meromorphic function of finite order ρ and c is a non-zero complex constant. Then, for each $\epsilon > 0$, we have
\[T(r, f(z) + c) = T(r, f) + O(r^{\rho - 1 + \epsilon}) + O(\log r) \]
From Lemma 2.2, it is evident that $S(r, f(z) + c) = S(r, f)$.

Lemma 2.3. [2] Let f be a meromorphic function with finite exponent of convergence of poles $\lambda(\frac{1}{f})$ and c is a non-zero complex constant. Then, for each $\epsilon > 0$, we have
\[N(r, f(z) + c)) = N(r, f) + O(r^{\lambda(\frac{1}{f}) - 1 + \epsilon}) + O(\log r). \]

Lemma 2.4. [11] Let F and G be two non-constant meromorphic functions. If F and G share 1 CM, then one of the following three cases holds:
(i) $\max \{T(r, F), T(r, G)\} \leq N_2(r, 0, F) + N_2(r, 0, G) + N_2(r, F) + N_2(r, G) + S(r, F) + S(r, G)$
(ii) $F \equiv G$
(iii) $FG \equiv 1$.

Lemma 2.5. Let $f(z)$, n and c be as in Theorem 1.1. and $F(z) = \frac{f^n(z)(f(z) - 1)^k f(z + c)}{\alpha(z)}$.
Then $T(r, F) = (n + k + 1) T(r, f) + S(r, f)$.

Proof: Since f is an entire function of finite order, we deduce from Lemma 2.1, and the standard Valiron-Mohon’ko theorem [12]) that
\[(n+k+1)T(r, f(z)) = T(r, f^{n+1}(z)(f(z)-1)^k) + S(r, f) = m(r, f^{n+1}(z)(f(z)-1)^k) + S(r, f) \]
\[\leq m \left(r, \frac{f^{n+1}(z)(f(z)-1)^k}{f(z)} \right) + m(r, F(z)) + S(r, f) \]
\[= m \left(r, \frac{f(z)}{f(z) + c} \right) + m(r, F(z)) + S(r, f) \leq T(r, F(z)) + S(r, f) \] (2.1)
On the other hand, using Lemma 2.2, we have
\[T(r, F(z)) \leq (n + k + 1) T(r, f(z)) + O(\log r) + S(r, f) \] (2.2)
Using (2.1) (2.2) we obtain $T(r, F(z)) = (n + k + 1) T(r, f(z)) + S(r, f)$ (2.3)

3. Proof of Theorems

3.1. Proof of Theorem 1.1. By Lemma 2.5, Lemma 2.2 and the Nevanlinna’s second fundamental theorem for entire functions, we have
\[(n + k + 1) T(r, f(z)) = T(r, F(z)) + S(r, f) \leq N(r, F(z)) + N(r, 0, F(z) - \alpha(z)) + S(r, f) \]
\[\leq N(r, 0, f^n(z)) + N(r, 0, (f(z) - 1)^k) + N(r, 0, f(z) + c) + N(r, 0, F(z) - \alpha(z)) + S(r, f) \]
\[\leq N(r, 0, f(z)) + N(r, 0, (f(z) - 1)) + N(r, 0, f(z) + c) + N(r, 0, F(z) - \alpha(z)) + S(r, f) \] (3.1)
By 3.1, and Lemma 2.2, we have \((n+k+1)T(r, f(z)) \leq 3T(r, f(z)) + N(r, 0, F(z) - \alpha(z)) + S(r, f)\)

Thus, \(N(r, 0, F(z) - \alpha(z)) \geq (n+k-2)T(r, f(z)) + S(r, f)\).

(3.2)

Since \(n \geq 2\), \(k \geq 1\) and by 3.2, \(F(z)\) assumes \(\alpha(z)\) infinitely many times.

3.2. Proof of Theorem 1.2.

Let \(F(z) = \frac{f^n(z)(f(z)-1)^k f(z+c)}{\alpha(z)}\) and \(G(z) = \frac{g^n(z)(g(z)-1)^k g(z+c)}{\alpha(z)}\)

Then \(F(z)\) and \(G(z)\) share 1 CM except the zeros or poles of \(\alpha(z)\) and hence

\(N_2(r, F(z)) = S(r, f)\) and \(N_2(r, G(z)) = S(r, g)\) as \(f\) and \(g\) entire functions \(\ (3.3)\)

\(N_2(r, 0, f^n(z)) = N_{21}(r, 0, f^n(z)) + 2N_{22}(r, 0, f^n(z)) = 2N_{22}(r, 0, f(z)) \leq N(r, 0, f(z))\)

(3.4)

From Lemma 2.5 and 3.4, we have

\(N_2(r, 0, F(z)) = N_2(r, 0, f^n(z)) + N_2(r, 0, (f(z)-1)^k) + N_2(r, 0, f(z+c))\)

\(\leq N_2(r, 0, f(z)) + N(r, 0, (f(z)-1)^k) + N(r, f(z+c)) + S(r, f)\)

\(\leq T(r, f) + kT(r, f) + T(r, f) + S(r, f) \leq (k+2)T(r, f) + S(r, f)\)

(3.5)

Similarly,

\(N_2(r, 0, G(z)) \leq (k+2)T(r, g) + S(r, g)\)

(3.6)

By 3.3, 3.5 and 3.6, we can write

\(N_2(r, \infty, F) + N_2(r, 0, F) \leq (k+2)T(r, f) + S(r, f)\) and \(N_2(r, \infty, G) + N_2(r, 0, G) \leq (k+2)T(r, g) + S(r, g)\)

(3.7)

By Lemma 2.4, suppose (i.) holds, that is,

\(\max \{T(r, F), T(r, G)\} \leq N_2(r, 0, F) + N_2(r, 0, G) + N_2(r, F) + N_2(r, G) + S(r, F) + S(r, G)\).

Then, by 3.7, we get

\(\max \{T(r, F), T(r, G)\} \leq (k+2)T(r, f) + (k+2)T(r, g) + S(r, f) + S(r, g)\)

\(\Rightarrow (T(r, F)) + T(r, G) \leq (2k+4)(T(r, f) + T(r, g) + S(r, f) + S(r, g))\)

(3.8)

By 2.3 and 3.8 we get

\((n+k+1)(T(r, f) + T(r, g)) \leq (2k+4)(T(r, f) + T(r, g)) + S(r, f) + S(r, g)\)

\(\Rightarrow (n-k-3)(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g)\). Which contradicts our hypothesis \(n \geq k+6\).

Hence by Lemma 2.4, we get either \(F(z) \equiv G(z)\) or \(F(z).G(z) \equiv 1\)

(3.9)

Suppose, \(F(z).G(z) \equiv 1\) i.e, \(f^n(z)(f(z)-1)^k f(z+c) \cdot g^n(z)(g(z)-1)^k g(z+c) = \alpha^2(z)\)

Then \(N(r, 0, f) = S(r, f)\) and \(N(r, 0, (f-1)) = S(r, f)\)

And \(\delta(0, f) + \delta(1, f) + \delta(\infty, f) = 3\). Which is contradiction to defect relation.

Hence, by 3.9 we conclude that \(F(z) \equiv G(z)\).

\(i.e., f^n(z)(f(z)-1)^k f(z+c) \equiv g^n(z)(g(z)-1)^k g(z+c)\)

(3.10)
Let $h(z) = \frac{f(z)}{g(z)}$. If $h^{n+k}(z)h(z+c) \neq 1$, then from 3.12

\[(h(z)g(z))^n(h(z)g(z) - 1)^k h(z+c)g(z+c) = g^{n}(z)(g(z) - 1)^k g(z+c)\]

(3.11)

Combining 3.11 with Binomial theorem, we derive

\[g^k(z) = \frac{(-1)^{k}C_1 g^{k-1}(z) [h^{n+k-1}(z) h(z+c) - 1]}{[h^{n+k}(z) h(z+c) - 1]} + ...\]

\[+ \frac{(-1)^{k+1} C_k g^{k}(z) [h^{n+k-k}(z) h(z+c) - 1]}{[h^{n+k}(z) h(z+c) - 1]} + ... + \frac{(-1)^{k+1} [h^{n}(z) h(z+c) - 1]}{[h^{n+k}(z) h(z+c) - 1]}\]

(3.12)

By lemma 2.2, we have $T(r, h(z+c)) = T(r, h(z)) + S(r, h)$

(3.13)

From 3.13 and using the condition $n \geq k+6$, it is easy to show that $h^{n+k}(z)h(z+c)$ is not a constant. Suppose that there exists a point z_0 such that $h^{n+k}(z_0)h(z_0 + c) = 1$. Since $g(z)$ is an entire function and using from 3.12 we get $h^{n}(z_0)h(z_0+c) = 1$. Hence $h^{k}(z_0) = 1$

\[: \overline{\mathcal{N}}(r, 0, h^{n+k}(z) h(z+c) - 1) \leq \overline{\mathcal{N}}(r, 0, h^{k}(z) - 1) \leq k T(r, h(z)) + O(1)\]

(3.14)

Denote $H = h^{n+k}(z)h(z+c)$, then we have

\[\overline{\mathcal{N}}(r, H) = \overline{\mathcal{N}}(r, h^{n+k}) + \overline{\mathcal{N}}(r, h(z+c)) \leq 2 T(r, h)\]

(3.15)

\[\overline{\mathcal{N}}(r, 1/H) = \overline{\mathcal{N}}(r, 1/h^{n+k}) + \overline{\mathcal{N}}(r, 1/h(z+c)) \leq 2 T(r, h)\]

(3.16)

By the Second fundamental theorem and using 3.14, 3.15, 3.16 we get

\[T(r, H) \leq \overline{\mathcal{N}}(r, H) + \overline{\mathcal{N}}(r, 0, H) + \overline{\mathcal{N}}(r, 0, H-1) + S(r, H)\]

\[\leq 2 T(r, h) + 2 T(r, h) + k T(r, h) + S(r, h) \leq (4 + k)T(r, h) + S(r, h)\]

Noting this, we have

\[(n+k)T(r, h) = T(r, h^{n+k}(z)) = T(r, \frac{H(z)}{h(z+c)}) \leq T(r, H(z)) + T(r, h(z+c)) + O(1)\]

\[\leq (4 + k)T(r, h) + T(r, h) + S(r, h) = (5 + k)T(r, h) + S(r, h)\]

Which is contradiction since $n \geq k + 6$. Hence $H = h^{n+k}(z)h(z+c) \neq 1$, then 1 is Picard’s exceptional value of H, then by Second fundamental theorem, we have

\[(n+k + 1)T(r, h) = T(r, H) \leq \overline{\mathcal{N}}(r, H) + \overline{\mathcal{N}}(r, 0, H) + \overline{\mathcal{N}}(r, 0, H-1) + S(r, H)\]

\[\leq 2 T(r, h) + 2 T(r, h) + S(r, h) \leq 4 T(r, h) + S(r, h)\]

(3.17)

Which is contradiction since $n \geq k + 6$. Therefore $h^{n+k}(z)h(z+c) \equiv 1$, then by 3.12, $h(z)^n h(z+c) \equiv 1$. Thus $h^k(z) \equiv 1$. Hence, we get $f(z) \equiv t g(z)$, where $t^k = 1$.

4. Open Questions

Question 4.1. What happens if the entire function is replaced by meromorphic function in Theorem 1.2?

Question 4.2. What happens if the CM sharing of small function is replaced by IM or weighted sharing of small function in Theorem 1.2?

Question 4.3. Is the condition on n in Theorem 1.2 sharp?
Question 4.4. Is Theorem 1.2 true if we replace \((f(z) - 1)^k\) by more generalized differential polynomial \(P(f)\)?

Acknowledgement: Second author was supported by UGC-UPE fellowship, Department of Mathematics, Karnataka University, Dharwad. Ref. No. KU/Sch/UGC-UPE/2013-14/114.

References

Received: April 15, 2014