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Abstract 

Binning is a categorization process to transform a continuous variable into a small set of 

groups or bins. Binning is widely used in credit scoring. In particular, it can be used to 

define the Weight of Evidence (WOE) transformation. In this paper, we first derive an 

explicit solution to a logistic regression model with one independent variable that has 

undergone a WOE transformation. We then use this explicit solution as a necessary 

condition for a good binning algorithm, thus providing a simple way to catch binning 

errors.  
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1 Introduction 
 

Binning is a categorization process to transform a continuous variable into a small 

set of groups or bins. Binning is widely used in credit scoring. While binning can 

be used to find Kolmogorov-Smirnov (KS) and lift chart from scores, binning is 

more frequently used at an early stage to select variables in credit scoring.  

Similar attributes (values) of an independent variable   are grouped into the 

same bin to enhance the predictive power. After binning is done, Information 

Value (IV) and other types of metric divergence measures can be calculated [8]. 

In particular, binning can be used to introduce Weight of Evidence (WOE) 

transformations for continuous variables. 
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Four binning algorithms are commonly used in credit scoring: equal-width 

binning, equal-size binning, optima binning and Multi-Interval Discretization 

binning in machine learning. In equal-width binning [6], the values of   is 

divided into a pre-defined number of equal width intervals. In equal-size binning, 

the attributes are sorted first, and then divided into a pre-defined number of 

equal-size bins. If   has distinct values, all the bins will have the same number of 

observations except the last one which may have fewer observations. In reality,   

may have repeating values. In this case, the repeating attributes must stay in the 

same bin. In SAS, PROC RANK can be used to do equal-size binning [8]. 

Specifically, PROC RANK computes the ranks of the values, uses GROUPS 

option to specify the number of bins, and handles ties of values. In optimal 

binning [6],   is divided into a large number of initial equal-width bins, say 50. 

These bins are then treated as categories of a nominal variable and grouped to the 

required number of segments in a tree structure. Multi-Interval Discretization 

binning [3] is the entropy minimization for binary discretizing the range of a 

continuous variable into multiple intervals, and recursively define the best bins.  

 

A good binning algorithm should follow the following guidelines [7]: 

 Missing values are binned separately. 

 Each bin should contain at least 5% of observations. 

 No bins have 0 accounts for good or bad. 

WOE is a quantitative method for combining evidence in support of a statistical 

hypothesis [4]. WOE is widely used in credit scoring to separate good accounts and 

bad accounts. It compares the proportion of good accounts to bad accounts at each 

attribute level, and measures the strength of the attributes of an independent 

variable in separating good and bad accounts.  

In this paper, we first derive an explicit solution to a logistic regression model 

with one independent variable that has undergone the WOE transformation. We 

then use this explicit solution as a necessary condition, thus providing a simply 

way to catch binning errors.  

The rest of the paper is organized as follows. In Section 2, the basic of logistic 

regression and maximum likelihood estimate are reviewed. In Section 3, we derive 

an explicit solution to a logistic regression model with one continuous variable 

that has undergone the WOE transformation. Section 4 states the necessary 

condition for good binning and presents a numerical example to catch binning 

errors. The paper is concluded in Section 5.   

2 Logistic Regressions and Maximum Likelihood Estimate 

To start with, let’s assume that                are the vector of   

independent variables and y is the dichotomous dependent variable. Assume we  
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have a sample of   independent observations (                )   

          where    denotes the value of   (0 for Good status and 1 for Bad 

status) and                are the values of            for the  -th observation, 

respectively.  

To adopt standard notation in logistic regression [9], we use the quantity 

            to represent the conditional mean of   given    The logistic 

regression model is given by the equation 

     
               

                 
                                          (2.1)                                                                                       

The logit transformation of      is  

       [
    

      
]                                           (2.2)                                                          

The likelihood function for logistic regression can be expressed as follows 

        ∏  (             )
  
[   (             )]

     
               (2.3)                                                                                                

where   is the vector (          . 

Note that if    is known, either 0 or 1, the 2 terms in the product of (2.3) reduces 

to only one term as the other term will have value of 1.  

The solution to the maximum likelihood of logistic regression is an estimate of   

which maximizes the expression (2.3). Since it is easier to work with the log of 

equation, the log likelihood is instead used 

       [    ]  

∑ {    [ (             )]          [   (             )]} 
 
         (2.4)                                                                 

The solution   to (2.4) is called the maximum likelihood estimate. The 

maximum likelihood estimate of                  will be denoted by 

 ̂                or simply  ̂      It follows from (3.1) that    ̂        

One well-known approach to maximizing a function is to differentiate it with 

respect  to  , set the derivative to 0, and then solve the resulting equations. 

Differentiating      with respect to    and setting it to 0, one obtains 

               ∑   
 
    ∑  (             ) 

 
                          (2.5)                                                                                    
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Differentiating      with respect to    for            and setting it to 0,  

                                        

∑      
 
    ∑     (             )

 
                                          (2.6) 

Since binning is done for each independent variable, from now on we shall focus on 

a single independent variable  . In this case, Equations (2.5) and (2.6) become 

                             ∑   
 
    ∑       

 
                                 (2.7)                                                                                                

                    ∑     
 
    ∑        

 
                            (2.8)                                          

Remark 2.1. If x has missing values, they will be simply ignored in logistic 

regression. Specifically, missing values will be taken out from (2.7) and (2.8). Thus, 

the 4 summations in (2.7) and (2.8) are taken for all non-missing values of   .  

Let’s study the existence and uniqueness of the maximum likeliness estimate. Since 

the log likelihood is globally concave, the maximum likeliness estimate can have at 

most one solution [1]. Therefore, if the maximum likeliness estimate has a solution, 

it must be unique. However, there are situations in which the log likelihood 

function has no maximum and hence the maximum likelihood estimate does not 

exist. For instance, in case of complete separation or quasi-complete separation [2] 

the maximum likelihood estimate does not exist. Consider a dataset with 20 

observations, where y = 0 if x is                and 1 if x is             

The left hand side of (2.8) is 55, and the absolute value of right hand side of (2.8) is  

|∑ [
       

         
 

       

         
]

  

   

|  ∑ 

  

   

|
       

         
 

       

         
|

 ∑ 

  

   

      

Hence, (2.8) and so the maximum likelihood estimate has no solution.  

On the other hand, if the simultaneous equations (2.7) and (2.8) have a solution, a 

natural question arises: can it be explicitly solved.  For some models and data, the 

answer is yes. For instance, when the system has only one independent variable and 

this independent variable is dichotomous [5]. For most models, they cannot be 

explicitly solved and must be solved by numerical methods.  

 



Good binning algorithm in credit scoring                            3233 

 

3 An Explicit Solution to Maximum Likelihood Estimate after 

WOE Transformation 

Mathematically, WOE is defined as the logarithm of the ratio of the odds of 

Bad-to-Good in the attribute level to the odds of Bad-to-Good in the entire sample.  

Table 3.1 demonstrates the use of WOE for independent variable  . For convenience, 

we put all missing values to the last group. If   is a categorical variable, each category 

is a group and has the same value. If   is a continuous variable, it is first binned into 

groups. Moreover, the values of   are sorted in the increasing order inside each group 

and across groups so that  

            
                   

                   

      
   

Group  x Good 

Accounts 

Bad 

Accounts 

WOE 

1   
   

 

   
… 
 

   
 

      
  

                

                
 

2       

 
      

… 
   

 

 

      
  

                

                
 

…   … … … … 
          

        

   … 
     

 

      
  

                

                
 

            

      

  …     
     

 

 

          
  

                  

                  
 

Table 3.1: Binning and WOE’s 
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Denote the number of good accounts and number of bad accounts at group    by 

   and     respectively. Then,    is equal to the sum of   in group  , that is, 

 

    ∑    

  

        

 

 

Since the observations with missing   will be ignored, we may assume y has no 

missing values without loss of generality. Hence,          represents the 

number of accounts in bin 1, and               the number of accounts at 

group j for              . For convenience, we define     as 0.  

 

Note that all the values of   in each group have the same WOE. In this case, the 

values of   are transformed into grouped WOE’s, thus reducing complexities to 

the modeling.  

 

 

Theorem 3.1.  When a logistic regression model is fitted with one independent 

variable that has undergone a WOE transformation, the maximum likelihood 

estimate has an explicit solution      (
 

 
) and       where   and   are 

the number of bad accounts and number of good accounts, respectively.  

 

Proof.  From the uniqueness of the maximum likeliness estimate, it is sufficient 

to verify    
 

 
 and      satisfy (2.7) and (2.8) after the WOE 

transformation, where                  and            
        There are two cases to consider.  

 

Case I: No groups have 0 good accounts or 0 bad accounts, that is,    and    

are all positive for                

We first verify (2.7). Note that the new independent variable     has the same 

value inside each group. Substituting    
 

 
 and      into the left hand side 

of (2.7), we obtain 
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Next, we verify (2.8). 
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        ∑         

    
       

Note that if   has no missing values, bin       does not exist. The above proof 

still holds after the last row of table 1 is removed.  

 

Case II: Some groups have 0 bad accounts or 0 good accounts, that is,      

or      for some i.  

In this case, WOEs are not defined and so the new independent variable     

will have missing values in these groups.  Assume among the k + 1 groups only 

groups            do not have 0 bad account or 0 good account, where  

                 Then, the left hand side of (2.7) becomes 

 



Good binning algorithm in credit scoring                            3237 

 

∑  (       )

   

         
 

   ∑  (       )

   

         

  (       )
 

  
 
 
   

   
 

   
 

   

  
 
 
   

   
 

   
 

    (       )
 

  
 
 
   

   
 

   
 

   

  
 
 
   

   
 

   
 

 (       )

   

   

  
   

   

   (       )

   

   

  
   

   

              

 ∑   

   

         

   ∑   

   

         

  

Next, we verify (2.8). 
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Remark 3.1. Refaat [6] uses an example to find an explicit solution to the 

maximum likelihood estimate for an independent categorical variable. We have 

extended to an independent continuous variable, considered missing values and 

bins with 0 good or bad accounts, and analytically verified the solution.  

 

4 A Necessary Condition  

Theorems 3.1 can serve as a necessary condition for a good binning algorithm.  

Corollary 4.1. A necessary condition for a good binning is that      (
 

 
) and 

     when a logistic regression model is fitted with one independent variable 

that has undergone a WOE transformation. 

 

We can use Corollary 4.1 to catch binning errors of a binning algorithm. To do 

this, we first perform the WOE transformation after binning. Next, we run logistic 

regression. If the slope is not 1 or the intercept is not   (
 

 
)  then this binning 

algorithm is not good. In practice, we should bear with computational errors.   

Let’s look at a numerical example. We use an imaginary dataset with     as the 

independent variable and   as the dependent variable.  

 

data age1; 

    input age y @@; 

    datalines; 

 

   10 0 10 0 10 1 10 0 10 1 10 0 10 0 10 0 10 0 10 0 

   10 1 10 0 10 0 10 0 10 1 10 1 10 0 10 0 10 0 10 0 

   10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 1 10 0 10 0 

   10 0 10 0 10 0 10 1 10 0 10 0 10 0 10 0 10 0 10 0 

   10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 1 10 0 10 1 

   20 0 20 0 20 0 20 1 20 0 20 0 20 1 20 0 20 0 20 0 

   20 1 20 0 20 0 20 0 20 0 20 0 20 1 20 0 20 1 20 0 

   20 0 20 0 20 0 20 1 20 0 20 0 20 0 20 0 20 0 20 0 

   30 1 30 0 30 0 30 1 30 1 30 0 30 0 30 0 30 0 30 0 

   40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 40 0 48 0 

   . 0 . 0 . 1 . 0 . 0 . 0 . 1 . 0 . 0 . 0 . 1 

   ; 

run; 

The data after the datalines statement in the above SAS program represent the 

values of age and   in turn. Note that age has some missing values. Using 

equal-size binning with SAS PROC RANK, we obtain the first 4 columns. We 

then calculate WOE for each bin and put it in column 5.  
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Bin Number Age  Good 

Accounts 

Bad 

Accounts 

WOE 

1 10 41 9 -0.061060257 

2 20 24 6 0.0689928715 

3 30 7 3 0.6079893722 

4 40, 48 10 0 Missing 

5 Missing  8 3 0.4744579796 

Table 4.1: Equal-size Binning 

Note that the total number of good accounts   and total number of bad accounts 

b are 90 and 21, respectively. Hence,   (
 

 
)            

The following SAS data step will perform the WOE transform to transform values 

of     into WOE.  

 

data age2; 

    set age1; 

    if age = . then M_age = 0.4744579796; 

    if age = 10 then M_age = -0.061060257; 

    else if age = 20 then M_age = 0.0689928715; 

    else if age = 30 then M_age = 0.6079893722; 

else if age > 30 then M_age = . ;  

run; 

 

Now, let’s run logistic regression in SAS as follows. 

 

proc logistic data=age3 descending;       

    model y = M_age;         

run; 

 

The output as in Table 4.2 demonstrates that it follows Theorem 3.1.  

 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard Wald 

Pr > ChiSq Error Chi-Square 

Intercept 1 -1.4553 0.2794 27.1382 <.0001 

M_age 1 1 0.9874 1.0258 0.3112 

Table 4.2: Maximum Likelihood Estimate Output 1 
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Next, let’s merge the bin with missing values to bin 3 and run logistic regression 

again to obtain results Table 4.3.    

 

data age4; 

  set age2; 

  if age > 30 then M_age = 0.6079893722; 

run; 

 

proc logistic data=age4 descending;       

  model y = M_age;         

run; 

 

 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 -1.4565 0.2776 27.5201 <.0001 

M_age 1 0.00829 0.9150 0.0001 0.9928 

   Table 4.3: Maximum Likelihood Estimate Output 2 

 

Obviously, it does not follow Theorem 3.1. Therefore, we have caught binning 

errors. Indeed, when bin 4 is merged into bin 3, the number of good accounts and 

number of bad accounts in the new bin should be adjusted to 10 + 7 = 17 and 0 + 

3 = 3, respectively. Hence, WOE in the new bin is  

 

 

  (

 
  
  
  

)                 

 

 

Let’s change WOE and run one more time logistic regression.  

data age5; 

    set age2; 

    if age >= 30 then M_age =             ; 

run; 

proc logistic data=age5 descending;       

    model y = M_age;                        

run; 
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Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 -1.4552 0.2436 35.6961 <.0001 

M_age 1 1.0005 1.1640 0.7388 0.3900 

   Table 4.4:  Maximum Likelihood Estimate Output 3 

As shown in Table 4.4, this time it follows Theorem 3.1. Note that the slope is not 

exactly 1 and the intercept is not exactly -1.4553 due to inevitable computational 

errors. Hence, we have caught and corrected the binning error.  

 

 

5  Conclusions 

 

In this paper, we have derived an explicit solution to a logistic regression model 

with one independent variable that has undergone a WOE transformation. We 

used this explicit solution as a necessary condition for a good binning algorithm 

and hence provided a simple way to catch binning errors.  
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