Soft Abel-Grassman’s Ring

T. Gaketem

Department of Mathematics, School of Science
Phayao University, Phayao, 56000, Thailand

Copyright © 2014 T. Gaketem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we discuss the notions of soft AG-ring, soft AG-subring, soft ideal of soft AG-ring and idealistic soft AG-ring and and to investigate its properties.

Mathematics Subject Classification: 20N20, 20N25

Keywords: Soft set, soft AG-ring, soft AG-subring, soft ideal, soft AG-ring homomorphism

1 Introduction

D. Molotsov, P.K. Maji and L.A. Zadeh [1] published detailed theoretical studies on operations of soft set and their algebraic properties. A pair \((F, A)\) is called soft set over \(U\), where \(F\) is a mapping \(F : A \rightarrow P(U)\). In other word, a soft set over \(U\) is a parameterized family of subset of the universe \(U\). For \(x \in A\), \(F(x)\) may be considered as the set of \(x\)-approximate elements of the soft set \((F, A)\) i.e. \((F, A) = \{F(x) \in P(U) : x \in A \subseteq E\}\). For two soft sets \((F, A)\) and \((G, B)\) over a common universe \(U\), we say that \((F, A)\) is a soft subset of \((G, B)\) if \(A \subseteq B\) and for all \(e \in A\), \(F(e)\) and \(G(e)\) are identical approximations.

M.A. Kazim and MD. Naseeruddin [2] have introduced the concept of an AG-groupoid. Let \(G\) be any nonempty sets. \(G\) is called an AG-groupoid if \(G\) satisfies the identity \((ab)c = (cb)a\) for all \(a, b, c \in G\). Moreover every LA-semigroups \(G\) a medial law hold

\[(a \cdot b) \cdot (c \cdot d) = (a \cdot c) \cdot (b \cdot d), \quad \forall a, b, c, d \in G.\]
Q. Mushtaq and M. Khan [4, p.322] asserted that, in every LA-semigroups G with left identity
\[(a \cdot b) \cdot (c \cdot d) = (d \cdot c) \cdot (b \cdot a), \quad \forall a, b, c, d \in G.\]

Further M. Khan, Faisal, and V. Anjum [3], asserted that, if a LA-semigroup G with left identity the following law holds
\[a \cdot (b \cdot c) = b \cdot (a \cdot c), \quad \forall a, b, c \in G.\]

M. Sarwar (Kamran) [5, p.112] defined LA-group as the following; a groupoid G is called a left almost group, abbreviated as LA-group, if (i) there exists $e \in G$ such that $ea = a$ for all $a \in G$, (ii) for every $a \in G$ there exists $a' \in G$ such that, $a'a = e$, (iii) $(ab)c = (cb)a$ for every $a, b, c \in G$.

S.M. Yusuf in [6, p.211] introduces the concept of a left almost ring (LA-ring). That is, a non-empty set R with two binary operations “+” and “·” is called a left almost ring, if $\langle R, + \rangle$ is an LA-group, $\langle R, \cdot \rangle$ is an LA-semigroup and distributive laws of “·” over “+” holds. T. Shah and I. Rehman [6, p.211] asserted that a commutative ring $\langle R, +, \cdot \rangle$, we can always obtain an LA-ring $\langle R, +, \cdot \rangle$ by defining, for $a, b, c \in R$, $a \oplus b = b - a$ and $a \cdot b$ is same as in the ring. We can not assume the addition to be commutative in an LA-ring. An LA-ring $\langle R, +, \cdot \rangle$ is said to be LA-integral domain if $a \cdot b = 0$, $a, b \in R$, then $a = 0$ or $b = 0$. Let $\langle R, +, \cdot \rangle$ be an LA-ring and S be a non-empty subset of R and S is itself and LA-ring under the binary operation induced by R, the S is called an LA-subring of R, then S is called an LA-subring of $\langle R, +, \cdot \rangle$. If S is an LA-subring of an LA-ring $\langle R, +, \cdot \rangle$, then S is called a left ideal of R if $RS \subseteq S$. Right and two-sided ideals are defined in the usual manner. An ideal I of R is called prime if $AB \in I$ implies $A \in I$ or $B \in I$.

In this note we prefer to called left almost rings (LA-rings) as Abel-Grassmann’s rings (abbreviated as an “AG-rings”).

T. Shah, I.Rehman and A. Razzaque [7, p.6121] defined soft AG-groupoid as the followig. Let $S = (S, \cdot)$ be set and A a nonempty set. Define a mapping $F : A \rightarrow P(S)$ as $F(x) = \{ y \in S \text{ such that } xRy \}$ for all $x \in A$, where $R \subseteq A \times S$ is a binary relation between the elements of A and S. The call the pair (F, A) as a soft set over S. Let the pair (F, A) be a soft set over AG-groupoid (S, \cdot) . Then (F, A) is called a soft AG-groupoid over S if for all $x \in A$, $F(x) \neq \emptyset$ imply that $F(x)$ is a AG-subgroupoid of S.

2 Main Results

In this paper, we define soft of AG-ring and study properties of soft AG-ring.

Definition 2.1. Let R be a AG-ring and let (F, A) be a soft set over R. Then (F, A) is called a soft AG-ring over R if $F(x)$ is a AG-subring of R, denoted by $F(x) \leq R$ for all $x \in A$.

Theorem 2.2. Let \((F, A)\) and \((G, B)\) be soft AG-rings over \(R\). Then

(1) \((F, A) \land (G, B)\) is a soft AG-ring, if it is non-null.

(2) \((F, A) \impliedby (G, B)\) is a soft AG-ring, if it is non-null.

(3) \((F, A) \lor (G, B)\) is a soft AG-ring, if \(A \cap B = \emptyset\).

Proof. (1) Let \((F, A) \land (G, B) = (H, C)\), where \(C = A \times B\) and \(H(x, y) = F(x) \cap G(y)\) for all \((x, y) \in C\). If \((H, C)\) is a non-null, then \(H(x, y) = F(x) \cap G(y) \neq \emptyset\). If \(F(x)\) and \(G(y)\) are AG-subrings of \(R\), then \(H(x, y)\) is a AG-subrings of \(R\), since \(H(x, y)\) is a family AG-subrings. Therefore \((H, C)\) is a soft AG-ring over \(R\).

(2) Let \((F, A) \impliedby (G, B) = (H, C)\), where \(C = A \cap B \neq \emptyset\), and \(H(x) = F(x) \cap G(x)\) for all \(x \in C\). Also \(H(x) = F(x) \cap G(x) \neq \emptyset\) for all \(x \in \text{Supp}(H, C)\), since \(F(x)\) and \(G(x)\) are sub AG-rings of \(R\). Then, \(H(x) < R\) Therefore \((H, C)\) is a soft AG-ring over \(R\).

(3) Let \((F, A) \lor (G, B) = (H, C)\), where \(C = A \cup B\), and:

\[
H(x) = \begin{cases}
F(x), & x \in A - B, \\
G(x), & x \in B - A, \\
F(x) \cup G(x) & x \in A \cap B.
\end{cases}
\]

Since \(A \cup B \neq \emptyset\), \(F(x) \cup G(x) = \emptyset\). Therefore for all \(x \in C\).

\[
H(x) = \begin{cases}
F(x), & x \in A - B, \\
G(x), & x \in B - A.
\end{cases}
\]

Also \(H(x) < R\) since \(F(x)\) and \(G(x)\) are AG-subrings of \(R\). Therefore \((H, C)\) is a soft AG-ring over \(R\). Generalizing the above theorem, we have the following:

\[
\square
\]

Theorem 2.3. Let \((F_i, A_i)_{i \in I}\), where \(I\) is an index set, be a non empty family of soft AG-rings over \(R\). Then

(1) \(\land_{i \in I}(F, A)\) is a soft AG-ring, if it is non-null.

(2) \(\impliedby_{i \in I}(F, A)\) is a soft AG-ring, if it is non-null.

(3) \(\lor_{i \in I}(F, A)\) is a soft AG-ring, if \(A_i \cap A_j = \emptyset, i \neq j, i, j \in I\).

Proof. (1) \(\land_{i \in I}(F, A)\) is a soft AG-ring, where \(C = \Pi_{i \in I} A_i\) and \(H(x_i) = \cap_{i \in I} F_i(x_i)\) for all \((x_i)_{i \in I} \in C\). If \(H(C)\) is a non-null and \((x_i)_{i \in I} \in \text{supp}(H, C)\) then \(H((x_i)_{i \in I}) = \cap_{i \in I} F_i(x_i) \neq \emptyset\) and \(F_i(x_i) < R, \forall i \in I\). Hence \(H((x_i)_{i \in I}) < R\) for all \((x_i)_{i \in I} \in \text{supp}(H, C)\). Therefore \((H, C)\) is a soft AG-ring over \(R\).
(2) $\cap_{i \in I}(F, A)$ is a soft AG-ring, where $C = \cap_{i \in I}A_i$ and $H(x) = \cap_{i \in I}F_i(x_i)$ for all $(x_i)_{i \in I} \in C$. If $H(C)$ is a non-null and $x \in supp(H, C)$ then $H(x) = \cap_{i \in I}F_i(x_i) \neq \emptyset \Rightarrow F_i(x) < R, \forall i \in I \Rightarrow H(x) < R. \forall x \in supp(H, C)$. Therefore (H, C) is a soft AG-ring over R.

(3) $\tilde{\cap}_{i \in I}(F, A)$ is a soft AG-ring, where $C = \cup_{i \in I}A_i$ and for all $x \in C, H(x) = \cup_{i \in I}(x)F_i(x)$ where $I(x) = \{i \in I | x \in A_i\}$. (H, C) is a non-null since $supp(H, C) = \cup_{i \in I} supp(F_i, A_i) \neq \emptyset$. Therefore $H(x) \cup_{i \in I} (x)F_i(x) \neq \emptyset$ implies $F_{i_o}(x) \cup_{i \in I} \neq \emptyset$ for some $i_o \in I(x)$ since $Ai \cap Aj = \emptyset, i \neq j$, then i_o is unique. Therefore $H(x) = F_{i_o}(x) < R$. Therefore $H(x) < R$. Hence (H, C) is a soft AG-ring over R.

\blacksquare

Definition 2.4. Let (F, A) and (G, B) be soft AG-rings over R. Then (G, B) is called a soft AG-subring of (F, A), if it satisfies the following:

1. $B \subset A$
2. $G(x)$ is a AG-subring of $F(x)$, for all $x \in supp(G, B)$.

Theorem 2.5. Let (F, A) and (G, B) be soft AG-rings over R. Then

1. If $G(x) \subset F(x), \forall x \in B \subset A$, then (G, B) is a soft AG-subring of (F, A).
2. $(F, A) \cap (G, B)$ is a soft AG-subring of both (F, A) and (G, B) if it is non-null.

Proof. 1. Since $B \subset A$ and $G(x) < F(x) \forall x \in B$, then $G(x) < F(x) \forall x \in B$. Therefore (G, B) is a soft AG-sub ring of (F, A).

2. Let $(F, A) \cap (G, B) = (H, C)$, where $C = A \cap B \subset A$ and $H(x) = F(x) \cap G(x) \neq \emptyset$ is a AG-subring of $F(x)$ for all $x \in supp(H, C)$. Hence (H, C) is a soft AG-subring of (F, A).

\blacksquare

Definition 2.6. Let (F, A) be a soft AG-ring over R. A non-null soft set (I, B) over R is called a soft ideal of (F, A) denoted by $(I, B) \triangleleft (F, A)$, if it satisfies the following conditions:

1. $B \subset A$
2. $I(x)$ is an ideal of $F(x)$ for all $x \in supp(I, B)$.

Theorem 2.7. Let (I_1, A_1) and (I_2, A_2) be soft ideals of a soft AG-ring (F, A) over R. Then

1. $(I_1, A_1) \cap (I_2, A_2)$ is a soft ideal of (F, A) if it is non-null.
(2) \(A_1 \cap A_2 \neq \emptyset \), then \((I_1, A_1)\tilde{\cup}(I_2, A_2)\) is a soft ideal of \((F, A)\).

Proof. Let \((I_1, A_1)\cap(I_2, A_2) = (I, B)\), where \(B = A_1 \cap A_2 \subset A\). But \(I_1(x) \triangleleft F(x)\) and \(I_2(x) \triangleleft F(x)\) for all \(x \in \text{supp}(I, B)\). Therefore \(I(x) = I_1(x) \cap I_2(x) \neq \emptyset\) since \((I, B)\) is non-null. This implies that \(I(x) \triangleleft F(x)\). Hence \((I, B) \triangleleft (F, A)\).

(2) Let \((I_1, A_1)\tilde{\cup}(I_2, A_2) = (I, C)\) where \(C = A_1 \cap A_2 \subset A\) and for all \(x \in C \subset A\). Therefore \(I(x) = I_1(x)\) is a non-empty ideal of \(F(x)\) for all \(x \in \text{supp}(I, C)\). Also \(I(x) = I_2(x)\) is a non-empty ideal of \(F(x)\) for all \(x \in \text{supp}(I, C)\). Therefore \(I(x)\) is a non-empty ideal of \(F(x)\) for all \(x \in \text{supp}(I, C)\). Hence \((I, C)\) is a soft ideal of \((F, A)\).

Theorem 2.8. Let \((I_1, A_1)\) and \((I_2, A_2)\) be soft ideals of soft AG-rings, \((F, A)\) and \((G, B)\) over \(R\) respectively. Then \((I_1, A_1)\cap(I_2, A_2)\) is a soft ideal of \((F, A)\cap(G, B)\), if it is non-null.

Proof. Let \((I_1, A_1)\cap(I_2, A_2) = (I, D)\), where \(D = A_1 \cap A_2 \subset A\) and for all \(x \in D\). \(I(x) = I_1(x) \cap I_2(x)\). Let \((F, A)\cap(G, B) = (H, C)\) where \(C = A \cap B\) and for all \(x \in C\) then \(H(x) = F(x) \cap G(x)\). Since \((I, D)\) is non-null we have \(I(x) = I_1(x) \cap I_2(x) \neq \emptyset\) since \(A_1 \subset A\) and \(A_2 \subset B\) we have \(A_1 \cap A_2 \subset A \cap B\) i.e \(D \subset C\). Since \(I_1(x), F(x)\) and \(I_2(x), G(x)\) for all \(x \in D\) we have \(I_1(x) \cap I_2(x) \subset F(x) \cap G(x)\) for all \(x \in D\) implies \(I(x) \subset H(x)\) so \(I(x) < H(x)\). Finally we need to show that \(ar \in I(x)\) for all \(r \in H(x)\) and for all \(a \in I(x)\). Since \(I_1(x), F(x), r \in H(x) = F(x) \cap G(x)\) and \(a \in I(x) = I_1(x) \cap I_2(x)\). We have \(ar \in I_1(x)\) and \(ar \in I_2(x)\). Hence \(ar \in I(x)\). Therefore \((I, D) \triangleleft (H, C)\).

Definition 2.9. Let \((F, A)\) and \((G, B)\) be a soft AG-ring over \(R\) and \(R'\) respectively. Let \(f : R \to R'\) and \(g : A \to B\) be two mappings. The pair \((f, g)\) is called a soft AG-ring homomorphism if the following conditions are satisfied;

1. \(F\) is a AG-ring epimorphism
2. \(g\) is surjective
3. \(f(F(x) = G(g(x))\) for all \(x \in A\).

If we have a soft AG-ring homomorphism between \((F, A)\) and \((G, B)\), \((F, A)\) is said to be soft AG-ring homomorphism to \((G, B)\), denoted by \((F, A) \sim (G, B)\). In addition, if \(f\) is an AG-ring isomorphism and \(g\) is a bijective, then \((f, g)\) is called a soft ring isomorphism and we say that \((F, A)\) is softly isomorphic to \((G, B)\) denoted by \((F, A) \cong (G, B)\).

ACKNOWLEDGEMENTS. The author is very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.
References

Received: April 5, 2014