On the Classical Solutions of the Extended Magnetostatic Born-Infeld System

Junichi Aramaki

Division of Science, Faculty of Science and Engineering,
Tokyo Denki University
Hatoyama-machi, Saitama 350-0394, Japan

Abstract

We consider the Born-Infeld system in a bounded domain. In order to get nontrivial solution, we extend the original Born-Infeld system. For extended Born-Infeld system under the Dirichlet condition or the Neumann condition, we shall prove the existence of weak solution and its regularity.

Mathematics Subject Classification: 35Q60, 35J50, 78A30, 78A25

Keywords: The Born-Infeld system, Variational problem, Regularity of solutions

1 Introduction

The Born-Infeld theory is an extension of the Maxwell theory. In order to overcome the infinity problem associated with a point charge source in the original Maxwell theory, the introduction of the Born-Infeld electromagnetic field theory is well recognized. See Born [2, 3], Born-Infeld [4, 5] and Yang [16]. In the Maxwell theory the action function is given by

\[\mathcal{L} = \frac{1}{2}(|E|^2 - |B|^2) \]
where \(\mathbf{E} \) and \(\mathbf{B} \) are electric and magnetic field, respectively. In the Born-Infeld theory, the action density is replaced by

\[
\mathcal{L}_B = b^2 \left(1 - \sqrt{1 - \frac{1}{b^2}(|\mathbf{E}|^2 - |\mathbf{B}|^2)} \right)
\]

where \(b > 0 \) is a scale parameter. See [2, 3]. Moreover taking the invariance principle into consideration, The author of [2, 3] introduced the other action density

\[
\mathcal{L}_{BI} = b^2 \left(1 - \sqrt{1 - \frac{1}{b^2}(|\mathbf{E}|^2 - |\mathbf{B}|^2) + \frac{1}{b^4}(\mathbf{E} \cdot \mathbf{B})^2} \right).
\]

In the magnetostatic case where \(\mathbf{B}(x, t) = \text{curl} \mathbf{A}(x) \) and \(\mathbf{E}(x, t) = 0 \), we see that

\[
\mathcal{L} = \mathcal{L}_B = \mathcal{L}_{BI} = -S(|\text{curl} \mathbf{A}|^2)
\]

where

\[
S(t) = b^2 \left(\sqrt{1 + \frac{1}{b^2}t} - 1 \right), \quad t \geq 0.
\] (1.1)

We consider the functional

\[
S_{BI}[\mathbf{A}] = \int_{\mathbb{R}^3} -\mathcal{L} \, dx = \int_{\mathbb{R}^3} S(|\text{curl} \mathbf{A}|^2) \, dx.
\]

The Euler-Lagrange equation of this functional is

\[
\text{curl} \left(S'(|\text{curl} \mathbf{A}|^2) \text{curl} \mathbf{A} \right) = 0 \quad \text{in} \quad \mathbb{R}^3. \quad (1.2)
\]

The author of [16] showed that the solution \(\mathbf{A} \) of (1.2) with finite energy satisfies \(\text{curl} \mathbf{A} = 0 \). If the solution \(\mathbf{A} \) satisfies \(\text{curl} \mathbf{A} \equiv 0 \), we say that the solution \(\mathbf{A} \) is trivial and if not so, we say that the solution is nontrivial. The fact that the solution of (1.2) is trivial means that in the vacuum space \(\mathbb{R}^3 \) the magnetic monopole without an external effect does not exist. For reason of this triviality, we change the equation (1.2) into a new equation with a lower order term in a bounded domain \(\Omega \) in \(\mathbb{R}^3 \), and with some boundary condition. Therefore our energy functional is of the form:

\[
\int_{\Omega} (S(|\text{curl} \mathbf{A}|^2) + F(x, \mathbf{A})) \, dx.
\] (1.3)

The Euler-Lagrange equation of this functional is

\[
\text{curl} \left(S'(|\text{curl} \mathbf{A}|^2) \text{curl} \mathbf{A} \right) + \frac{1}{2} \nabla_x F(x, \mathbf{A}) = 0 \quad \text{in} \quad \Omega. \quad (1.4)
\]
The boundary condition is to prescribe the tangential component of A:

$$A_T = A_T^0 \text{ on } \partial \Omega$$

or a natural condition

$$S'(|\text{curl } A|^2)(\text{curl } A)_T = D_T^0 \text{ on } \partial \Omega.$$ (1.6)

The problem of such setting was considered by Chen and Pan [6]. They proved that if $F = 0$, the solutions A of (1.4) with the boundary condition (1.6) are trivial, and if $F = 0$ and Ω is simply connected, without holes and if $\nu \cdot \text{curl } A_T^0 = 0$ on $\partial \Omega$ where ν is the outer normal unit vector to $\partial \Omega$, then the solutions A of (1.4) with the boundary condition (1.5) are trivial. Thus we modify (1.2) to get nontrivial solutions. In order to do so, we consider the extended Born-Infeld model in the magnetostatic case by adding a lower order term $F(x, A)$ as in (1.3).

In this paper we consider the case where the lower order term $F(x, A)$ is of the form

$$F(x, A) = \langle M(x)A, A \rangle + 2b \cdot A + c(x)$$

where $M(x) = (M_{ij}(x))$ is a given positively definite symmetric 3×3 matrix, $b(x)$ is a given vector field and $c(x)$ is a given function. The authors of [6] considered the case where $F(x, A) = a(x)|A|^2$ where $a(x)$ is a positive scalar function, and got some interesting results. Our purpose is to extend their results to the case where a lower order term is of the form (1.7). When $F(x, A) = a(x)|A|^2$, the authors of [6] observed that if the boundary data is small, there exists a classical solution of (1.4) with (1.5) or (1.6). However, in the case (1.7), it will be seen that we can not ignore the effect of the vector field b.

Throughout this paper, we impose that the following assumptions hold.

(A1) Ω is simply connected bounded domain in \mathbb{R}^3 without holes and with a C^4 boundary $\partial \Omega$.

(A2) $M(x) = (M_{ij}(x))_{i,j=1,2,3}$ is a symmetric and positively definite matrix with $M_{ij} \in C^{1,1}(\bar{\Omega})$ and, that is, $M_{ij}(x) = M_{ji}(x)$ and there exists a constant $m_0 > 0$ such that

$$\sum_{i,j=1}^3 M_{ij}(x)\xi_i \xi_j \geq m_0 |\xi|^2 \text{ for all } \xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 \text{ and } x \in \bar{\Omega},$$

$$b(x) = (b_1(x), b_2(x), b_3(x)) \text{ with } b_i \in C^{1,1}(\bar{\Omega}) \text{ and } c(x) \in C^0(\bar{\Omega}).$$

(A3) $A_T^0 \in C^{2,\alpha}(\partial \Omega, \mathbb{R}^3)$ where A_T is a tangent vector field to $\partial \Omega$, and $\nu \cdot \text{curl } A_T^0 = 0$ on $\partial \Omega$ where ν is the outer unit vector field to $\partial \Omega$.

(A4) $D_T \in C^{2,\alpha}(\partial \Omega, \mathbb{R}^3)$ where D_T is a tangent vector field to $\partial \Omega$.

(A2') (A2) holds with $M_{ij} \in C^{2,\alpha}(\bar{\Omega})$ and $b_i \in C^{2,\alpha}(\bar{\Omega}).$
In the following for any vector field A, we denote the tangential component of A by A_T, that is, $A = A - (\nu \cdot A)\nu$.

We call the following system the Dirichlet problem.

\[
\begin{align*}
\text{curl } (S'(|\text{curl } A|^2)\text{curl } A) + M(x)A + b &= 0 \quad \text{in } \Omega, \\
A_T &= A_T^0 \quad \text{on } \partial \Omega.
\end{align*}
\tag{1.8}
\]

Then we get the following result.

Theorem 1.1. Assume that (A1), (A2') and (A3) with $0 < \alpha < 1$ hold. Then there exists $R_1 > 0$ such that if

\[
\|A_T^0\|_{C^{2,\alpha}(\partial \Omega)} + \|b\|_{C^{1,\alpha}(\overline{\Omega})} \leq R_1,
\]

then the system (1.8) has a classical solution $A \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$.

Remark 1.2. If $A_T^0 \neq 0$, the above solution is nontrivial.

Next, we call the following system the Neumann problem.

\[
\begin{align*}
\text{curl } (S'(|\text{curl } A|^2)\text{curl } A) + M(x)A + b &= 0 \quad \text{in } \Omega, \\
S'(|\text{curl } A|^2)(\text{curl } A)_T &= D_T^0 \quad \text{on } \partial \Omega.
\end{align*}
\tag{1.9}
\]

Then we get the following result.

Theorem 1.3. Assume that (A1), (A2) and (A4) with $0 < \alpha < 1$ hold. Then there exists $R_2 > 0$ such that if

\[
\|D_T^0\|_{C^{2,\alpha}(\partial \Omega)} + \|b\|_{C^{1,\alpha}(\overline{\Omega})} \leq R_2,
\]

then the system (1.9) has a solution A, and A can be written in the form:

\[A = v + \nabla \phi\]

where $v \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ satisfies $\nu \cdot v = 0$ on $\partial \Omega$ and $\text{div } v = 0$ in Ω, and $\phi \in C^{2,\alpha}(\overline{\Omega})$. In addition to the above hypotheses, if $M_{ij} \in C^{2,\alpha}(\overline{\Omega})$ and $\nu \cdot \text{curl } D_T \in C^{2,\alpha}(\partial \Omega)$, then we get $v \in C^{3,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ and $\phi \in C^{3,\alpha}(\overline{\Omega})$.

This paper consists of the following sections. In section 2, we give some preliminaries. We attempt to modify the given function $S(t)$ in (1.1) for $t > K$ with $0 < K < b^2$ so that the modified function S_K has quadratic growth of $|\text{curl } A|$, and we see some properties of S_K as in [6]. In section 3, we consider the Dirichlet problem (1.8) and give the proof of Theorem 1.1. Section 4 is devoted to the Neumann problem (1.9) and to the proof of Theorem 1.3.

2 Preliminaries

First, we consider the Dirichlet problem (1.8). Since the corresponding functional

\[S^+[A] = \int_\Omega (S(|\text{curl } A|^2) + \langle M(x)A, A \rangle + 2b \cdot A + c(x))dx \]

(2.1)

does not have weak compactness in the admissible space which we treat, we modify \(S(t) \) for \(t > K \) with \(0 < K < b^2 \) in the functional (2.1) to get a strictly increasing function \(S_K(t) \) which has quadratic growth in \(|\text{curl } A| \) at infinity. Then we consider the modified functional

\[S_K^+[A] = \int_\Omega (S_K(|\text{curl } A|^2) + \langle M(x)A, A \rangle + 2b \cdot A + c(x))dx. \]

(2.2)

If we take a minimizer \(A_K \) of \(S_K^+ \) in some admissible space, and if \(\|\text{curl } A_K\|_{L^\infty(\Omega)} \leq \sqrt{K} \), then we will be able to see that \(A_K \) is a critical point of the original functional (2.1).

Next, for the Neumann problem (1.9) we consider the modified functional

\[H_K^+[A] = \int_\Omega (S_K(|\text{curl } A|^2) + \langle M(x)A, A \rangle + 2b \cdot A + c(x))dx + 2\int_{\partial\Omega} (D_T \times A_T) \cdot \nu dS \]

(2.3)

where \(dS \) denotes the surface element. The Euler-Lagrange equations of (2.2) and (2.3) are following, respectively:

\begin{align*}
\{ \text{curl } (S_K'(|\text{curl } A|^2)\text{curl } A) + M(x)A + b = 0 \quad \text{in } \Omega, \\
A_T = A_T^0 \quad \text{on } \partial\Omega. \}
\end{align*}

(2.4)

and

\begin{align*}
\{ \text{curl } (S_K'(|\text{curl } A|^2)\text{curl } A) + M(x)A + b = 0 \quad \text{in } \Omega, \\
S'(|\text{curl } A|^2)(\text{curl } A)_T = D_T^0 \quad \text{on } \partial\Omega. \}
\end{align*}

(2.5)

Now we introduce some function spaces. First we define subspaces of \(L^2(\Omega, \mathbb{R}^3) \)

\[\mathbb{H}_1(\Omega) = \{ v \in L^2(\Omega, \mathbb{R}^3); \text{curl } v = 0, \text{div } v = 0 \text{ in } \Omega, \nu \cdot v = 0 \text{ on } \partial\Omega \}, \]

\[\mathbb{H}_2(\Omega) = \{ v \in L^2(\Omega, \mathbb{R}^3); \text{curl } v = 0, \text{div } v = 0 \text{ in } \Omega, \nu \times v = 0 \text{ on } \partial\Omega \}. \]

We say that \(\Omega \) is simply connected if \(\dim \mathbb{H}_1(\Omega) = 0 \), and \(\Omega \) has no holes if \(\dim \mathbb{H}_2(\Omega) = 0 \). Next we define

\[\mathcal{H}^2(\Omega, \text{curl}) = \{ u \in L^2(\Omega, \mathbb{R}^3); \text{curl } u \in L^2(\Omega, \mathbb{R}^3) \}, \]

\[\mathcal{H}^2(\Omega, \text{div}) = \{ u \in L^2(\Omega, \mathbb{R}^3); \text{div } u \in L^2(\Omega) \}, \]

\[\mathcal{H}^2(\Omega, \text{curl}, \text{div}) = \mathcal{H}(\Omega, \text{curl}) \cap \mathcal{H}(\Omega, \text{div}). \]
It is easy to show that these spaces are Banach spaces with respect to the norm
\[
\|u\|_{\mathcal{H}^2(\Omega,\text{curl})} = \|u\|_{L^2(\Omega)} + \|\text{curl } u\|_{L^2(\Omega)},
\]
\[
\|u\|_{\mathcal{H}^2(\Omega,\text{div})} = \|u\|_{L^2(\Omega)} + \|\text{div } u\|_{L^2(\Omega)},
\]
\[
\|u\|_{\mathcal{H}^2(\Omega,\text{curl,div})} = \|u\|_{L^2(\Omega)} + \|\text{curl } u\|_{L^2(\Omega)} + \|\text{div } u\|_{L^2(\Omega)},
\]
respectively.

The next lemma was shown by Dautray and Lions [8, p. 204].

Lemma 2.1. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^3 \) with a \(C^2 \) boundary. Then the following holds.

(i) The normal trace map \(u \mapsto \nu \cdot u \) is a continuous map from \(\mathcal{H}^2(\Omega,\text{div}) \) to \(H^{-1/2}(\Omega) \).

(ii) The tangential trace map \(u \mapsto u_T = u - (u \cdot \nu)\nu = \nu \times (u \times \nu) \) is a continuous map from \(\mathcal{H}^2(\Omega,\text{curl}) \) to \(H^{-1/2}(\Omega,\mathbb{R}^3) \).

Next lemma is followed from [8, Proposition 6] and Pan [15].

Lemma 2.2. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^3 \) with \(C^2 \) boundary. Then the following holds.

(i) If \(\Omega \) has no holes, \(u \in \mathcal{H}^2(\Omega,\text{curl},\text{div}) \) and \(\nu \times u \in H^{1/2}(\partial \Omega) \), then \(u \in H^1(\Omega,\mathbb{R}^3) \) and there exists a constant \(C(\Omega) > 0 \) such that
\[
\|u\|_{H^1(\Omega)} \leq C(\Omega)(\|\text{curl } u\|_{L^2(\Omega)} + \|\text{div } u\|_{L^2(\Omega)} + \|\nu \times u\|_{H^{1/2}(\partial \Omega)}).
\]

(ii) If \(\Omega \) has simply connected, \(u \in \mathcal{H}^2(\Omega,\text{curl},\text{div}) \) and \(\nu \cdot u \in H^{1/2}(\partial \Omega) \), then \(u \in H^1(\Omega,\mathbb{R}^3) \) and there exists a constant \(C(\Omega) > 0 \) such that
\[
\|u\|_{H^1(\Omega)} \leq C(\Omega)(\|\text{curl } u\|_{L^2(\Omega)} + \|\text{div } u\|_{L^2(\Omega)} + \|\nu \cdot u\|_{H^{1/2}(\partial \Omega)}).
\]

Here we introduce the notion of weak solution of the modified system.

For the Dirichlet problem (2.4), we call \(A \in H^1(\Omega,\mathbb{R}^3, A^0_T) := \{A \in H^1(\Omega,\mathbb{R}^3); A_T = A^0_T\} \) is a weak solution of (2.4) if
\[
\int_{\Omega} (S_K(|\text{curl } A|^2)\text{curl } A \cdot \text{curl } H + (MA) \cdot H + b \cdot H)dx = 0 \tag{2.6}
\]
for any \(H \in H^1_0(\Omega,\mathbb{R}^3) := \{H \in H^1(\Omega,\mathbb{R}^3), H_T = 0 \text{ on } \partial \Omega\} \).

For the Neumann problem (2.5), we call \(A \in \mathcal{H}^2(\Omega,\text{curl}) \) is a weak solution of (2.5) if
\[
\int_{\Omega} (S_K(|\text{curl } A|^2)\text{curl } A \cdot \text{curl } H + (MA) \cdot H + b \cdot H)dx
+ \int_{\partial \Omega} (D_T \times H_T) \cdot \nu dS = 0 \tag{2.7}
\]
for any $\mathbf{H} \in C^1(\overline{\Omega}, \mathbb{R}^3)$.

Finally following [6], we construct a modified function $S_K(t)$ from $S(t)$ in (1.1). First we note that $S(t) \in C^\infty([0, \infty))$ is a positive, strictly increasing, and strictly concave function. If we define

$$\Phi(t) = t(S'(t))^2, \quad t \geq 0,$$

then $\Phi(t) \in C^\infty([0, \infty))$ is a positive, strictly increasing, and strictly concave function on $(0, \infty)$. Moreover,

$$2\Phi'(t) - \frac{\Phi(t)}{t} > 0 \text{ for all } t \in (0, b^2).$$

We can construct the modified function $S_K(t)$ as follows (cf. [6]).

Lemma 2.3. For any $K > 0$, we can construct a function $S_K(t) \in C^3([0, \infty))$ such that for some small $\delta > 0$,

(i) $0 < S_K(t) = \begin{cases}
S(t) & t \in [0, K], \\
C^3\text{-connected} & t \in [K, K+\delta], \\
a_Kt + b_1 & t \in [K+\delta, \infty)
\end{cases}$ \quad (2.8)

where a_K is a positive constant and b_1 is also a positive constant satisfying

$$b_1 > b^2 \left(\sqrt{1 + \frac{1}{b^2}K - 1} \right) - a_K(K+\delta).$$

(ii) $0 < S'_K(t) = \begin{cases}
S'(t) & t \in [0, K], \\
C^2\text{-connected} & t \in [K, K+\delta], \\
a_K & t \in [K+\delta, \infty)
\end{cases}$ \quad (2.9)

If we define $\Phi_K(t) = t(S'_K(t))^2$, then $\Phi_K(t) \in C^2([0, \infty))$ is strictly increasing and

$$\Phi_K(t) = \begin{cases}
\Phi(t) & t \in [0, K], \\
\text{concave} & t \in [K, K+\delta], \\
a_Kt & t \in [K+\delta, \infty)
\end{cases}$$ \quad (2.10)

(ii) Since $\rho = \Phi_K(t)$ is strictly increasing, the inverse function $t = \Phi^{-1}_K(\rho)$ is defined. Define a function f_K as

$$f_K(\rho) = \frac{1}{S'_K(\Phi^{-1}_K(\rho))}. \quad (2.11)$$

Then $f_K \in C^2([0, \infty))$ and

$$0 < f_K(\rho) = \begin{cases}
\frac{1}{S'(\Phi^{-1}_K(\rho))} & \rho \in \left[0, \frac{K}{4(1+K/b^2)}\right], \\
C^2\text{-connected} & \rho \in \left[\frac{K}{4(1+K/b^2)}, a_K^2(K+\delta)\right], \\
\frac{1}{a_K} & \rho \in \left[a_K^2(K+\delta), \infty\right)
\end{cases} \quad (2.12)$$
(iii) If $0 < K < b^2$, we can choose the small $\delta > 0$ such that

$$2\Phi'_K(t) - \frac{\Phi_K(t)}{t} \geq l(K) > 0 \text{ for all } t \in [K, K + \delta],$$

and

$$f_K(\rho) - 2f'_K(\rho) \rho \geq \lambda(K, \delta) > 0 \text{ for all } \rho \in [0, \infty).$$

Moreover, we can show that

$$S'_K(t) + 2tS''_K(t) > 0 \text{ for all } t \in [0, \infty).$$

From the definition of S_K, we can easily show that the functional

$$\int_{\Omega} S_K(|\text{curl } \nu|^2)dx$$

is a strictly convex functional on $\mathcal{H}^2(\Omega, \text{curl})$. Moreover, we can see that

$$0 < \inf_{0 \leq t < \infty} S'_K(t) < \sup_{0 \leq t < \infty} S'_K(t) < \infty.$$

3 The Dirichlet problem

In this section we shall prove the existence of the minimizer of the functional S_K^+ and its regularity of the minimizer for the Dirichlet problem (1.8). Since S_K^+ has not the term $\text{div } A$, the functional has not compactness in the natural space $H^1_t(\Omega, \mathbb{R}^3, A^0_T)$. To overcome this, we decompose the minimizer problem into two steps. First we define

$$\mathcal{X}^2 = H^1_t(\Omega, \text{div } 0, A^0_T) \oplus \text{grad} H^1_0(\Omega)$$

where

$$H^1_t(\Omega, \text{div } 0, A^0_T) = \{ \nu \in H^1(\Omega, \mathbb{R}^3); \text{div } \nu = 0 \text{ in } \Omega, \nu_T = A^0_T \text{ on } \partial \Omega \}.$$

Define

$$a_t(A^0_T, \mathcal{X}^2) = \inf_{\nu + \nabla \phi \in \mathcal{X}^2} S^+_K[\nu + \nabla \phi].$$

Then we can prove the existence of the unique minimizer.

Lemma 3.1. Let Ω be a bounded domain in \mathbb{R}^3 with C^4 boundary and $A^0_T \in H^{1/2}(\partial \Omega, \mathbb{R}^3)$, and let $0 < K < \infty$. Then S_K^+ has a unique minimizer $\nu^*_K + \nabla \phi^*_K \in \mathcal{X}^2$, that is

$$a_t(A^0_T, \mathcal{X}^2) = S^+_K[\nu^*_K + \nabla \phi^*_K].$$
Proof. Since we can construct the divergence-free lifting $v \in H^1(\Omega, \mathbb{R}^3)$ of A^0_T (for example see Aramaki [1]), we can see $X^2 \neq \emptyset$. Let $\{v_n + \nabla \phi_n\} \subset X^2$ be a minimizing sequence of S^+_K. Let

$$\Omega_n = \{x \in \Omega; |\text{curl } v_n(x)| \geq K + \delta\}.$$

We will use an elementary inequality

$$ab \leq \varepsilon a^2 + \frac{1}{4\varepsilon} b^2\text{ for any } \varepsilon > 0 \text{ and } a, b \geq 0. \hspace{1cm} (3.1)$$

Then using (A2) and (3.1), we have

$$S^+_K[v_n + \nabla \phi_n] = \int_\Omega (S_K(|\text{curl } v_n|^2) + (M(v_n + \nabla \phi_n), v_n + \nabla \phi_n)
+ b \cdot (v_n + \nabla \phi_n) + c)dx
\geq \int_{\Omega_n} S_K(|\text{curl } v_n|^2)dx + \int_{\Omega} ((M(v_n + \nabla \phi_n), v_n + \nabla \phi_n)
+ b \cdot (v_n + \nabla \phi_n) + c)dx
\geq \int_{\Omega_n} (a_K|\text{curl } v_n|^2 + b_1)dx + \int_{\Omega} (m_0|v_n + \nabla \phi_n|^2
- |b||v_n + \nabla \phi_n| - ||c||_{C^0(\Omega)}\Omega
\geq a_K \int_{\Omega} |\text{curl } v_n|^2dx - \int_{\Omega\setminus\Omega_n} (a_K|\text{curl } v_n|^2 + b_1)dx
\geq \int_{\Omega} \{(m_0 - \varepsilon)|v_n + \nabla \phi_n|^2 - \frac{1}{4\varepsilon} |b|^2\} dx - ||c||_{C^0(\Omega)}\Omega
\geq a_K\|\text{curl } v_n\|_{L^2(\Omega)}^2 + (m_0 - \varepsilon)\|v_n + \nabla \phi_n\|^2_{L^2(\Omega)}
\geq -(a_K(K + \delta)^2 + b_1 + ||c||_{C^0(\Omega)}\Omega$$

where $|\Omega|$ denotes the volume of Ω. Since v_n and $\nabla \phi_n$ are orthogonal in $L^2(\Omega, \mathbb{R}^3)$ to each other, we see that $\|v_n + \nabla \phi_n\|^2_{L^2(\Omega)} = \|v_n\|^2_{L^2(\Omega)} + \|\nabla \phi_n\|^2_{L^2(\Omega)}$. If we put $\varepsilon = m_0/2$, we see that $\{\text{curl } v_n\}, \{v_n\}$ and $\{\nabla \phi_n\}$ are bounded in $L^2(\Omega, \mathbb{R}^3)$. From the Poincaré inequality, $\{\phi_n\}$ is bounded in $H^1_0(\Omega)$. Since div $v_n = 0$ in Ω and $v_{n,T} = A^0_T$ on $\partial \Omega$, it follows from Lemma 2.2 that $\{v_n\}$ is bounded in $H^1(\Omega, \mathbb{R}^3)$. Passing to subsequences, we may assume that $v_n \rightharpoonup v^*_K$ weakly in $H^1(\Omega, \mathbb{R}^3)$ and $\phi_n \rightarrow \phi^*_K$ weakly in $H^1_0(\Omega)$. Then we can see that div $v^*_K = 0$ in Ω and $v^*_{K,T} = A^0_T$ on $\partial \Omega$. Thus $v^*_K \in H^1(\Omega, \text{div} 0, A^0_T)$. Since S^+_K is convex functional and lower semi continuous on X^2, it is weakly lower semi-continuous in X^2. Thus $v^*_K + \nabla \phi^*_K$ is a minimizer of S^+_K. Since S^+_K is strictly convex, the uniqueness follows. \hfill \square

Secondly we define

$$a_t(A^0_T, H^1) = \inf_{A \in H^1(\Omega, \mathbb{R}^3, A^0_T)} S^+_K[A].$$
Then we have $a_t(A^0_T, H^1) = a_t(A^0_T, X^2)$. In fact, let $A \in H^1_t(\Omega, \mathbb{R}^3, A^0_T)$. Then the following Dirichlet problem
\[
\begin{cases}
\Delta \phi = \text{div} A & \text{in } \Omega, \\
\phi = 0 & \text{on } \partial \Omega
\end{cases}
\]has a unique solution $\phi \in H^2(\Omega) \cap H^1_0(\Omega)$. If we define $v = A - \nabla \phi \in H^1(\Omega, \mathbb{R}^3)$, we have $\text{div} v = 0$ in Ω and $v_T = A_T - (\nabla \phi)_T = A_T - A^0_T$. Hence $v \in H^1(\Omega, \text{div} 0, A^0_T)$, so $A = v + \nabla \phi \in X^2$. This implies that $a_t(A^0_T, X^2) \leq a_t(A^0_T, H^1)$. On the other hand, since $A^K = v^K + \nabla \phi^K \in H^1_t(\Omega, \mathbb{R}^3, A^0_T)$, we see that
\[a_t(A^0_T, X^2) = S^+_K[A^K] \geq a_t(A^0_T, H^1).
\]
This fact is a reason of decomposition of the above minimizing problem into two steps.

Summing up, since $A^K = v^K + \nabla \phi^K \in H^1_t(\Omega, \mathbb{R}^3, A^0_T)$, we obtain the following.

Proposition 3.2. Let Ω be a bounded domain in \mathbb{R}^3 with a C^4 boundary, $A^0_T \in H^{1/2}(\partial \Omega, \mathbb{R}^3)$ and $0 < K < \infty$. Then S^K_+ has a unique minimizer $A^K \in H^1_t(\Omega, \mathbb{R}^3, A^0_T)$.

In the following we shall give the regularity of the minimizer $A^K = v^K + \nabla \phi^K$. First we examine the H^2 regularity of ϕ^K.

Lemma 3.3. Let Ω be a bounded domain in \mathbb{R}^3 with a C^2 boundary and $0 < K < \infty$. Then we see that $\phi^K \in H^2(\Omega) \cap H^1_0(\Omega)$ and
\[
\|\phi^K\|_{H^2(\Omega)} \leq C(\|\phi^K\|_{L^2(\Omega)} + \|v^K\|_{H^1(\Omega)} + \|b\|_{H^1(\Omega)})
\]where C depends on Ω, m_0 and $\|M\|_{C^0(\overline{\Omega})}$.

Proof. Since ϕ^K is the minimizer of the functional $S^K_+[v^K + \nabla \phi]$ on $H^1_0(\Omega)$, the Euler-Lagrange equation becomes
\[
\begin{cases}
\text{div} (M(x)(v^K + \nabla \phi) + b) = 0 & \text{in } \Omega, \\
\phi = 0 & \text{on } \partial \Omega.
\end{cases}
\]
We rewrite (3.3) into the Dirichlet system for the second order elliptic linear equation with respect to ϕ:
\[
\begin{cases}
-\sum_{i,j=1}^3 \partial_i (M_{ij}(x) \partial_j \phi) = \sum_{i,j=1}^3 \partial_i (M_{ij} v^K_{i,j}) + \text{div } b & \text{in } \Omega, \\
\phi = 0 & \text{on } \partial \Omega
\end{cases}
\]
where $v^K = (v^K_{1,1}, v^K_{1,2}, v^K_{1,3})$. Since $M_{ij} \in W^{1,\infty}(\Omega)$ and the right hand side of the first equation of (3.4) belongs to $L^2(\Omega)$, it follows from Chen and Wu [7, Chapter 1, Theorem 5.2] that $\phi^K \in H^2(\Omega)$ and the estimate (3.2) holds. \qed
Remark 3.4. In the right hand side of the estimate (3.2), we can remove the term $\|\phi_K^*\|_{L^2(\Omega)}$. In fact, if we multiply the first equation of (3.3) by ϕ_K^*, and then integrate by parts, we see that

$$
\int_\Omega M(x) \nabla \phi_K^* \cdot \nabla \phi_K^* dx = \int_\Omega \text{div} (M(x) v_K^* + b) \phi_K^* dx \\
\leq C(\|v_K^*\|_{H^1(\Omega)} + \|b\|_{H^1(\Omega)}) \|\phi_K^*\|_{L^2(\Omega)}
$$

where C depends on $\|M\|_{C^1(\overline{\Omega})}$. If we use the Poincaré inequality:

$$
\|\phi_K^*\|_{L^2(\Omega)} \leq C(\Omega) \|\nabla \phi_K^*\|_{L^2(\Omega)}
$$

and positivity of the matrix $M(x)$, we easily see that

$$
\|\phi_K^*\|_{L^2(\Omega)} \leq C(\Omega) \|\nabla \phi_K^*\|_{L^2(\Omega)} \leq C(\|v_K^*\|_{H^1(\Omega)} + \|b\|_{H^1(\Omega)})
$$

where C depends on Ω, m_0 and $\|M\|_{C^1(\overline{\Omega})}$. Thus we can remove $\|\phi_K^*\|_{L^2(\Omega)}$ from (3.2).

We shall give the $C^{2,\alpha}$ estimate of $A_K^* = v_K^* + \nabla \phi_K^*$ and prove that if the boundary data A_T^0 and b are small, then $\|\text{curl} A_K^*\|_{C^0(\overline{\Omega})}$ is small. Then we will see that A_K^* is a classical solution of the extended magnetostatic Born-Infeld system (1.8). First the minimizer A_K^* of $a_t(A_T^0, H^1)$ can be written into the form $A_K^* = v_K^* + \nabla \phi_K^*$ where $v_K^* \in H^1_t(\Omega, \text{div} 0, A_T^0)$ and $\phi_K^* \in H^2(\Omega) \cap H^1_0(\Omega)$. Moreover, v_K^* and ϕ_K^* are weak solutions of the following equations, respectively.

$$
\left\{ \begin{array}{ll}
\text{curl} (S_K^t(|\text{curl} v|^2)\text{curl} v) + M(x)(v + \nabla \phi_K^*) + b = 0 & \text{in } \Omega, \\
v_T = A_T^0 & \text{on } \partial \Omega
\end{array} \right. \tag{3.5}
$$

and

$$
\left\{ \begin{array}{ll}
\text{div} (M(x)(v_K^* + \nabla \phi) + b) = 0 & \text{in } \Omega, \\
\phi = 0 & \text{on } \partial \Omega.
\end{array} \right. \tag{3.6}
$$

Lemma 3.5. Let Ω be a bounded domain in \mathbb{R}^3 with a C^4 boundary, $A_T^0 \in H^{1/2}(\partial \Omega)$ and $0 < K < \infty$. Then we get the estimate

$$
\|v_K^*\|_{H^1(\Omega)} + \|\phi_K^*\|_{H^1(\Omega)} \leq C(\|A_T^0\|_{H^{1/2}(\partial \Omega)} + \|b\|_{L^2(\Omega)}) \tag{3.7}
$$

where C depends on $\Omega, m_0, \|M\|_{C^0(\overline{\Omega})}$ and S_K^t.

Proof. For brevity of notations, we write v_K^* and ϕ_K^* by v and ϕ, respectively. It is well known that there exists a divergence-free extension $A^e \in H^1(\Omega, \mathbb{R}^3)$ of A_T^0 such that $\|A^e\|_{H^1(\Omega)} \leq C(\Omega)\|A_T^0\|_{H^{1/2}(\partial \Omega)}$. For example, see [1]. Define
where ∇. Then $\text{div } u = 0$ in Ω and $u_T = 0$ on $\partial \Omega$. If we choose u as a test field of (2.4), we see that

$$0 = \int_{\Omega} (S_K'(|\text{curl } v|^2)\text{curl } v \cdot \text{curl } u + M(x)(v + \nabla \phi) \cdot u + b \cdot u) dx$$

$$= \int_{\Omega} (S_K'(|\text{curl } v|^2)\text{curl } v \cdot (\text{curl } v - \text{curl } A^e)$$

$$+ M(x)(v + \nabla \phi) \cdot (v + \nabla \phi - \nabla \phi - A^e)$$

$$+ b \cdot (v + \nabla \phi - \nabla \phi - A^e) dx.$$
Next we give the regularity of \(v^*_K \) and \(\phi^*_K \).

Proposition 3.6. Assume that \(\Omega, M(x) \) and \(b(x) \) satisfy (A1), (A2') and (A3) with \(0 < \alpha < 1 \), respectively, and \(0 < K < b^2 \). Let \(A^*_K = v^*_K + \nabla \phi^*_K \) be a minimizer of \(S'_K \). Then \(v^*_K \in C^{2,\alpha}(\Omega, \mathbb{R}^3) \), \(\phi^*_K \in C^{3,\alpha}(\Omega) \) and

\[
\|v^*_K\|_{C^{2,\alpha}(\Omega)} + \|
abla \phi^*_K\|_{C^{2,\alpha}(\Omega)} \leq C
\]

where \(C \) depends on \(\Omega, \alpha, m_0, \|M\|_{C^{1,1}(\Omega)}, \|b\|_{C^{1,1}(\Omega)}, K, \delta \) and \(\|A^0_T\|_{C^{2,\alpha}(\partial \Omega)} \).

The proof of Proposition 3.6 consists of following several lemmas.

First we consider the following div-curl system.

\[
\begin{cases}
\text{curl } Q = -M(x)(v^*_K + \nabla \phi^*_K) - b(x) & \text{in } \Omega, \\
\text{div } Q = 0 & \text{in } \Omega, \\
\nu \cdot Q = 0 & \text{on } \partial \Omega.
\end{cases}
\]

(3.8)

We define a space \(H^m(\Omega, \text{div } 0, \mathbb{R}^3) = \{ u \in H^m(\Omega, \mathbb{R}^3); \text{div } u = 0 \text{ in } \Omega \} \) for \(m = 1, 2 \). First we have the following lemma.

Lemma 3.7. The above system (3.8) has a unique solution \(Q_K \in H^2(\Omega, \text{div } 0, \mathbb{R}^3) \) and

\[
\|Q\|_{H^2(\Omega)} \leq C(\|A^0_T\|_{H^{1/2}(\partial \Omega)} + \|b\|_{H^1(\Omega)})
\]

where \(C \) depends on \(\Omega, m_0, \|M\|_{C^{1}(\Omega)} \) and \(S'_K \).

Proof. Since \(M(v^*_K + \nabla \phi^*_K) + b \in H^1(\Omega, \text{div } 0, \mathbb{R}^3) \) and \(\Omega \) has no holes, it follows from [15, Lemma 5.7] or [1] that (3.8) has a solution \(Q_K \in H^2(\Omega, \text{div } 0, \mathbb{R}^3) \). Since \(\Omega \) is simply connected, \(\dim \mathbb{H}_1(\Omega) = \{0\} \), so the uniqueness follows. Moreover, we have

\[
\|Q\|_{H^2(\Omega)} \leq C(\Omega)\|M(v^*_K + \nabla \phi^*_K) + b\|_{H^1(\Omega)}
\]

\[
\leq C(\|v^*_K\|_{H^1(\Omega)} + \|
abla \phi^*_K\|_{H^1(\Omega)} + \|b\|_{H^1(\Omega)})
\]

where \(C \) depends on \(\Omega \) and \(\|M\|_{C^{1}(\Omega)} \). From Lemma 3.3, Remark 3.4 and Lemma 3.5, we get the conclusion. \(\square \)

From (2.4) and (3.8), we have

\[
\text{curl } (S'_K(|\text{curl } v^*_K|^2)\text{curl } v^*_K) = \text{curl } Q_K
\]

in \(\Omega \). Since \(\Omega \) is simply connected, there exists \(\psi_K \in H^1(\Omega) \) such that

\[
S'_K(|\text{curl } v^*_K|^2)\text{curl } v^*_K = Q_K + \nabla \psi_K.
\]

(3.9)
From (2.11), we can write
\[
\text{curl } A_K^* = \text{curl } v_K^* = \frac{Q_K + \nabla \psi_K}{S'K(\Phi^{-1}(Q_K + \nabla \psi_K)^2)} = f_K((Q_K + \nabla \psi_K^2)(Q_K + \nabla \psi_K)).
\]
Since \(\nu \cdot \text{curl } v_K = \nu \cdot \text{curl } A_T^* = 0 \) by the hypothesis (A3), and \(\nu \cdot Q_K = 0 \) on \(\partial \Omega \) by (3.8), it follows from (3.9) that \(\partial \psi_K / \partial \nu = 0 \) on \(\partial \Omega \). Here we used the fact \(\nu \cdot \text{curl } v = \nu \cdot \text{curl } v_T \) according to Monneau [12]. Thus \(\psi_K \in H^1(\Omega) \) is a weak solution of the following system.

\[
\begin{cases}
\text{div } (f_K((Q_K + \nabla \psi_K^2)(Q_K + \nabla \psi))) = 0 & \text{in } \Omega, \\
\frac{\partial \psi_K}{\partial \nu} = 0 & \text{on } \partial \Omega.
\end{cases}
\]

(3.10)

Lemma 3.8. Let \(\psi_K \in H^1(\Omega) \) be a weak solution of (3.10). Then for any \(1 < q < \infty \), \(\psi_K \in W^{1,q}(\Omega) \) and
\[
\| \psi_K \|_{W^{1,q}(\Omega)} \leq C(a_K + \| A_T^0 \|_{H^{1/2}(\partial \Omega)} + \| b \|_{H^1(\Omega)})
\]
where \(C \) depends on \(\Omega, q, K, \delta \) and \(f_K \).

Proof. We rewrite the system (3.10) as a linear equation of \(\psi_K \).

\[
\begin{cases}
a_K^{-1} \Delta \psi_K = \text{div } f & \text{in } \Omega, \\
\frac{\partial \psi_K}{\partial \nu} = 0 & \text{on } \partial \Omega
\end{cases}
\]

where \(f = a_K^{-1} \nabla \psi_K - f_K((Q_K + \nabla \psi_K^2)(Q_K + \nabla \psi_K)). \) Note that
\[
\int_{\Omega} \text{div } f dx = \int_{\partial \Omega} f \cdot \nu dS = 0
\]
because of (3.8) and (3.10), and by the definition of \(f_K \) we see that if \(|Q_K(x) + \nabla \psi_K(x)|^2 \geq a_K^2(K + \delta) \), then \(f(x) = -f_K((|Q_K + \nabla \psi_K^2|)(Q_K + \nabla \psi_K)). \) From Lemma 3.7 and the Sobolev embedding theorem, we see that \(Q_K \in C^{0,1/2}(\overline{\Omega}, \mathbb{R}^3) \). Since \(|\nabla \psi_K| \leq |Q_K + \nabla \psi_K| + |Q_K| \), we see that
\[
|f(x)| \leq C(1 + a_K^{-1}|Q_K(x)|)
\]
where \(C \) depends on \(K, \delta \) and \(f_K \). In particular, \(f \in L^\infty(\Omega, \mathbb{R}^3). \) By the classical \(L^q \) Schauder estimate (cf. Morrey [13, Theorem 5.5.5’ and the remarks in p.157], Lions and Magenes [11]), we see that \(\psi_K \in W^{1,q}(\Omega) \) for any \(1 < q < \infty \) and
\[
\| \psi_K \|_{W^{1,q}(\Omega)} \leq C(\Omega, q) \| f \|_{L^q(\Omega)} \leq C(a_K + \| Q_K \|_{L^q(\Omega)})
\]
where \(C \) depends on \(\Omega, q, K, \delta \) and \(f_K \). Since \(H^2(\Omega) \hookrightarrow C^{0,1/2}(\overline{\Omega}) \hookrightarrow L^q(\Omega) \), using Lemma 3.7
\[
\| Q_K \|_{L^q(\Omega)} \leq C(\Omega) \| Q_K \|_{H^2(\Omega)} \leq C(\| A_T^0 \|_{H^{1/2}(\partial \Omega)} + \| b \|_{H^1(\Omega)}).
\]
Since $W^{1,q}(\Omega) \hookrightarrow C^{\tau}(\overline{\Omega})$ for $\tau = 1 - 3/q > 0$ by the Sobolev embedding theorem, we see that $\psi_K \in C^{0,\tau}(\overline{\Omega})$ for such τ. Since $1 < q < \infty$ is arbitrary, it follows that $\psi_K \in C^{0,\tau}(\overline{\Omega})$ for any $\tau \in (0, 1)$. Next we examine the regularity of \mathbf{v}_K^*.

Lemma 3.9. For any $1 < q < \infty$, $\mathbf{v}_K^* \in W^{1,q}(\Omega, \mathbb{R}^3)$ and

$$
\|\mathbf{v}_K^*\|_{W^{1,q}(\Omega)} \leq C(\Omega, q)\|\text{curl} \mathbf{A}_K\|_{L^q(\Omega)} \leq C(\Omega, q)(d_0\|\mathbf{Q}_K + \nabla \psi_K\|_{L^q(\Omega)} + \|\mathbf{A}_T^0\|_{W^{1-1/q,q}(\partial\Omega)})
$$

where $d_0 = \|f_K\|_{C^q(0, \infty)}$. In particular, $\mathbf{v}_K^* \in C^{0,\tau}(\overline{\Omega}, \mathbb{R}^3)$ for any $\tau \in (0, 1)$.

Proof. We note that $\mathbf{Q}_K + \nabla \psi_K \in L^q(\Omega, \mathbb{R}^3)$ for any $1 < q < \infty$, and so

$$
\text{curl} \mathbf{A}_K^* = f_K(|\mathbf{Q}_K + \nabla \psi_K|^2)(\mathbf{Q}_K + \nabla \psi_K) \in L^q(\Omega, \mathbb{R}^3).
$$

Here we remember that \mathbf{v}_K^* is a solution of the following system

$$
\begin{cases}
\text{curl} \mathbf{v} = \text{curl} \mathbf{A}_K^* = f_K(|\mathbf{Q}_K + \nabla \psi_K|^2)(\mathbf{Q}_K + \nabla \psi_K) & \text{in } \Omega, \\
\text{div} \mathbf{v} = 0 & \text{in } \Omega, \\
\mathbf{v}_T = \mathbf{A}_T^0 & \text{on } \partial\Omega.
\end{cases}
\tag{3.11}
$$

By the hypothesis (A3), $\mathbf{v} \cdot \text{curl} \mathbf{A}_T^0 = 0$ on $\partial\Omega$. Since Ω has no holes, it follows from [1] that (3.11) has a unique solution $\mathbf{v}_K^* \in W^{1,q}(\Omega, \mathbb{R}^3)$ satisfying

$$
\|\mathbf{v}_K^*\|_{W^{1,q}(\Omega)} \leq C(\Omega, q)(\|f_K(|\mathbf{Q}_K + \nabla \psi_K|^2)(\mathbf{Q}_K + \nabla \psi_K)\|_{L^q(\Omega)} + \|\mathbf{A}_T^0\|_{W^{1-1/q,q}(\partial\Omega)}) \leq C(\Omega, q)(d_0\|\mathbf{Q}_K + \nabla \psi_K\|_{L^q(\Omega)} + \|\mathbf{A}_T^0\|_{W^{1-1/q,q}(\partial\Omega)}).
$$

Since q is arbitrary, it follows from the Sobolev embedding theorem that $\mathbf{v}_K^* \in C^{\tau}(\overline{\Omega}, \mathbb{R}^3)$ for any $\tau \in (0, 1)$.

We examine the $C^{1,\tau}$ regularity of ϕ_K^*.

Lemma 3.10. For any $\tau \in (0, 1)$, $\phi_K^* \in C^{1,\tau}(\overline{\Omega})$ and

$$
\|\phi_K^*\|_{C^{1,\tau}(\overline{\Omega})} \leq C(\|\mathbf{v}_K^*\|_{W^{1,q}(\Omega)} + \|\mathbf{b}\|_{W^{1,q}(\Omega)})
$$

where C depends on Ω, q, τ and $\|M\|_{C^1(\overline{\Omega})}$.

Proof. Since ϕ_K^* is a solution of (3.3), we can rewrite (3.3) into the form

$$
\begin{cases}
-\sum_{i,j=1}^{3} M_{ij}(x) \partial_i \partial_j \phi_K^* - \sum_{j=1}^{3} (\sum_{i=1}^{3} (\partial_i M_{ij}(x))) \partial_j \phi_K^* \\
\quad = \sum_{i,j=1}^{3} \partial_i (M_{ij}(x) v_{K,j}^*) + \text{div} \mathbf{b} & \text{in } \Omega, \\
\phi_K^* = 0 & \text{on } \partial\Omega
\end{cases}
\tag{3.12}
$$
where we denote $\mathbf{v}_K^* = (v^*_{K,1}, v^*_{K,2}, v^*_{K,3})$. Since $M_{ij} \in C^0(\Omega)$ satisfies (A2) and the right hand side of the first equation in (3.8) belongs to $L^q(\Omega)$ for any $1 < q < \infty$, it follows from Gilbarg and Trudinger [9, Theorem 9.15] or [7, Chapter 3, Theorem 6.3] that $\phi^*_K \in W^{2,q}(\Omega)$ and

$$
\|\phi^*_K\|_{W^{2,q}(\Omega)} \leq C(\Omega,q)(\|\nabla (M\mathbf{v}_K^*)\|_{L^q(\Omega)} + \|\text{div } \mathbf{b}\|_{L^q(\Omega)})
\leq C(\|\mathbf{v}_K^*\|_{W^{1,q}(\Omega)} + \|\mathbf{b}\|_{W^{1,q}(\Omega)})
$$

where C depends on Ω, q and $\|M\|_{C^1(\Omega)}$. By the Sobolev embedding theorem: $W^{2,q}(\Omega) \hookrightarrow C^{1,1-3/q}(\Omega)$ for any $1 < q < \infty$. Thus the conclusion holds.

We examine $C^{1,\tau}$ regularity of \mathbf{Q}_K.

Lemma 3.11. $\mathbf{Q}_K \in C^{1,\tau}(\overline{\Omega}, \mathbb{R}^3)$ for any $\tau \in (0,1)$ and

$$
\|\mathbf{Q}_K\|_{C^{1,\tau}(\overline{\Omega})} \leq C(\|\mathbf{v}_K^*\|_{C^{0,\tau}(\overline{\Omega})} + \|\nabla \phi^*_K\|_{C^{0,\tau}(\overline{\Omega})} + \|\mathbf{b}\|_{C^{0,\tau}(\overline{\Omega})})
$$

where C depends on Ω, τ and $\|M\|_{C^{0,\tau}(\overline{\Omega})}$.

Proof. From Lemma 3.9, 3.10 and (A2), the right hand side of the first equation in (3.8) belongs to $C^{0,\tau}(\overline{\Omega})$. Since Ω has no holes, it follows from the regularity of div-curl system (cf. [15, Lemma 5.7 and Corollary 5.4]) that $\mathbf{Q}_K \in C^{1,\tau}(\overline{\Omega}, \mathbb{R}^3)$ and

$$
\|\mathbf{Q}_K\|_{C^{1,\tau}(\overline{\Omega})} \leq C(\Omega,q)\|\mathbf{v}_K^*\|_{C^{0,\tau}(\overline{\Omega})} + \|\nabla \phi^*_K\|_{C^{0,\tau}(\overline{\Omega})} + \|\mathbf{b}\|_{C^{0,\tau}(\overline{\Omega})}.
$$

We examine $C^{1,\theta}$ estimate of ψ_ξ for some $\theta \in (0,1)$.

Lemma 3.12. $\psi_\xi \in C^{1,\theta}(\overline{\Omega})$ for some $\theta \in (0,1)$ and $\|\psi_\xi\|_{C^{1,\theta}(\overline{\Omega})} \leq C$ where C depends on $\Omega, \|\mathbf{Q}_K\|_{C^{1,\tau}(\overline{\Omega})}, \|\psi_\xi\|_{C^{0,\tau}(\overline{\Omega})}, m_0$ and $\|M\|_{C^{0,\tau}(\overline{\Omega})}$.

Proof. Define

$$
\mathbf{A}(x, z) = (A_1(x, z), A_2(x, z), A_3(x, z)) = f_K(|\mathbf{Q}_K(x) + z|^2)(\mathbf{Q}_K + z).
$$

Then by Lemma 3.11, we know $\mathbf{Q}_K \in C^{1,\tau}(\overline{\Omega}, \mathbb{R}^3)$, so $\mathbf{A}(x, z) \in C^{1,\tau}(\overline{\Omega} \times \mathbb{R}^3 \times \mathbb{R}^3)$. From (2.14), we have

$$
\sum_{i,j=1}^3 \frac{\partial A_i}{\partial z_j}(x, z)\xi_i \xi_j \geq \lambda(K, \delta)|\xi|^2 \text{ for all } \xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3.
$$

Moreover, we have

$$(1 + |z|^2) \left| \frac{\partial A_i}{\partial z_j}(x, z) \right| + (1 + |z|) \left(\left| \frac{\partial A_i}{\partial x_j}(x, z) \right| + |A_i(x, z)| \right) \leq \Lambda(1 + |z|^2)$$
for some constant $\Lambda > 0$. Therefore ψ_K is a solution of the Neumann problem
\[
\begin{cases}
\text{div} \mathbf{A}(x, \nabla \psi) = 0 & \text{in } \Omega, \\
\frac{\partial \psi}{\partial \mathbf{n}} = 0 & \text{on } \partial \Omega.
\end{cases}
\]

Applying Ladyzhenskaya and Ural’tzeva [10, Chapter 10, Theorem 2.1], there exists $\theta \in (0, 1)$ and $C > 0$ depending on Ω, $\|Q\|_{C^1(\Omega)}$, $\|\psi_K\|_{C^0(\Omega)}$, $\lambda(K, \delta)$ and Λ such that $\psi_K \in C^{1,\theta}(\Omega)$ and $\|\psi_K\|_{C^{1,\theta}(\Omega)} \leq C$. \hfill \Box

We examine $C^{1,\theta}$ estimate of A_K^*.\hfill \Box

Lemma 3.13. We can see that $A_K^* = v_K^* + \nabla \phi_K^* \in C^{1,\theta}(\overline{\Omega}, \mathbb{R}^3)$ and $\|A_K^*\|_{C^{1,\theta}(\Omega)} \leq C$ where C depends on $\Omega, \theta, \|f_K\|_{C^{1,\theta}(\Omega)}, \|Q_K\|_{C^{0,\theta}(\Omega)}, \|\nabla \psi_K\|_{C^{0,\theta}(\Omega)}, \|A_T^0\|_{H^{1/2}(\partial \Omega)}$ and $\|b\|_{C^{1,\theta}(\Omega)}$.

Proof. First we return to the system (3.11). From Lemma 3.11 we see that $Q_K \in C^{1,\theta}(\overline{\Omega}, \mathbb{R}^3)$. Thus the right hand side of the first equation of (3.11) belongs to $C^{0,\theta}(\overline{\Omega}, \mathbb{R}^3)$ according to Lemma 3.12. We can easily see that
\[
\text{div} (f_K(|Q_K + \nabla \psi_K|^2)(Q_K + \nabla \psi_K)) = \text{div} (\text{curl} A_K^*) = 0 \text{ in } \Omega,
\]

$\mathbf{\nu} \cdot A_T^0 = 0$ on $\partial \Omega$, and using (A3)
\[
\mathbf{\nu} \cdot f_K(|Q_K + \nabla \psi_K|^2)(Q_K + \nabla \psi_K) = 0 = \mathbf{\nu} \cdot \text{curl} ((\mathbf{\nu} \times A_T^0) \times \mathbf{\nu}) = \mathbf{\nu} \cdot \text{curl} A_T^0 \text{ on } \partial \Omega.
\]

If we take the lifting \mathbf{H} of $-\mathbf{\nu} \times A_T^0$, then $\mathbf{\nu} \times \mathbf{H} = A_T^0$. Since Ω is simply connected, it follows from [15, Corollary 5.6] that $v_K^* \in C^{1,\theta}(\overline{\Omega}, \mathbb{R}^3)$ and
\[
\|v_K^*\|_{C^{1,\theta}(\Omega)} \leq C(\Omega, \theta)(\|\text{curl} A_K^*\|_{C^{0,\theta}(\Omega)} + \|A_T^0\|_{C^{1,\theta}(\partial \Omega)}) \leq C
\]
where C depends on $\Omega, \theta, \|f_K\|_{C^{1,\theta}(\Omega)}, \|Q_K\|_{C^{0,\theta}(\Omega)}$ and $\|\nabla \psi_K\|_{C^{0,\theta}(\Omega)}$. Here we return to the system (3.4). Since the right hand side of the first equation of (3.4) belongs to $C^{0,\theta}(\overline{\Omega})$, by the Schauder theory we have $\phi_K^* \in C^{2,\theta}(\overline{\Omega})$. Thus $A_K^* = v_K^* + \nabla \phi_K^* \in C^{1,\theta}(\overline{\Omega}, \mathbb{R}^3)$ and we get the concluding estimate. \hfill \Box

We examine $C^{2,\theta}$ estimate of ψ_K.\hfill \Box

Lemma 3.14. We can see that $\psi_K \in C^{2,\theta}(\overline{\Omega})$ and $\|\psi_K\|_{C^{2,\theta}(\Omega)} \leq C$ where C depends on $\Omega, \theta, \lambda(\Omega, \delta), \|f_K\|_{C^{1,\theta}(\Omega)}, \|Q_K\|_{C^{1,\theta}(\Omega)}$, and $\|\psi_K\|_{C^{1,\theta}(\Omega)}$.

Proof. First we consider the system (3.8). From Lemma 3.13, the right hand side of the first equation of (3.8) belongs to $C^{1,\theta}(\overline{\Omega}, \mathbb{R}^3)$. Therefore it follows from the regularity of the div-curl system that $Q_K \in C^{2,\theta}(\overline{\Omega}, \mathbb{R}^3)$ and
\[
\|Q_K\|_{C^{2,\theta}(\Omega)} \leq C(\|M(v_K^* + \nabla \phi_K^*) + b\|_{C^{1,\theta}(\Omega)}) \\
\leq C(\|v_K^*\|_{C^{1,\theta}(\Omega)} + \|
abla \phi_K^*\|_{C^{1,\theta}(\Omega)} + \|b\|_{C^{1,\theta}(\Omega)})
\]
where C depends on Ω, θ, and $\|M\|_{C^{1,\theta}(\overline{\Omega})}$.

Next we rewrite (3.10) into the following linear equation

\[
\begin{cases}
\sum_{i,j=1}^{3} a_{ij}(x) \frac{\partial^2 \psi_k}{\partial x_i \partial x_j} = h & \text{in } \Omega, \\
\frac{\partial \psi_k}{\partial \nu} = 0 & \text{on } \partial \Omega
\end{cases}
\]
(3.13)

where

\[
a_{ij} = f_K(|Q_K + \nabla \psi_K|^2) \delta_{ij} + 2f'_K(|Q_K + \nabla \psi_K|^2)(Q_{Ki,j} + \partial_i \psi_K)(Q_{K,j} + \partial_j \psi_K),
\]

\[
h = -2f'_K(|Q_K + \nabla \psi_K|^2)\langle \nabla Q_K(Q_K + \nabla \psi_K), Q_K + \nabla \psi_K \rangle - f_K(|Q_K + \nabla \psi_K|^2)\text{div} Q_K
\]

where $Q_K = (Q_{K,1}, Q_{K,2}, Q_{K,3})$. We note that $a_{ij} \in C^{0,\theta}(\overline{\Omega})$ and the system is uniformly elliptic according to (14.1). Since $h \in C^{0,\theta}(\overline{\Omega})$ and $f_K \in C^2([0, \infty))$, we see that $\psi_K \in C^{2,\theta}(\overline{\Omega})$ and $\|\psi_K\|_{C^{2,\theta}(\overline{\Omega})} \leq C \|h\|_{C^{1,\theta}(\overline{\Omega})} \leq C_1$ where C_1 depends on $\Omega, \theta, \lambda(K, \delta), \|f_K\|_{C^{1,\theta}(\overline{\Omega})}, \|Q_K\|_{C^{1,\theta}(\overline{\Omega})}$ and $\|\psi_K\|_{C^{1,\theta}(\overline{\Omega})}$.

Finally we examine $C^{2,\theta}$ estimate of v^*_K.

Lemma 3.15. It follows that $v^*_K \in C^{2,\theta}(\overline{\Omega}, \mathbb{R}^3)$ and

\[
\|v^*_K\|_{C^{2,\theta}(\overline{\Omega})} \leq C(\Omega, \theta)\|\nabla A^*_K\|_{C^{1,\theta}(\overline{\Omega})}.
\]

Proof. Since $Q_K + \nabla \psi_K \in C^{1,\theta}(\overline{\Omega}, \mathbb{R}^3)$ by Lemma 3.11 and 3.14, it follows from the regularity of the div-curl system (3.11) that $v^*_K \in C^{2,\theta}(\overline{\Omega}, \mathbb{R}^3)$,

\[
\text{curl } A^*_K = f_K(|Q_K + \nabla \psi_K|^2)(Q_K + \nabla \psi_K) \in C^{1,\theta}(\overline{\Omega}, \mathbb{R}^3)
\]

and $\|v^*_K\|_{C^{2,\theta}(\overline{\Omega})} \leq C\|\text{curl } A^*_K\|_{C^{1,\theta}(\overline{\Omega})}$.

Since the right hand side of the first equation of (3.12) belongs to $C^{1,\theta}(\overline{\Omega}) \subset C^{0,\alpha}(\overline{\Omega})$, we see that $\phi^*_K \in C^{2,\alpha}(\overline{\Omega}) \cap C^{3,\theta}(\overline{\Omega})$, and so $A^*_K = v^*_K + \nabla \phi^*_K \in C^{2,\theta}(\overline{\Omega}, \mathbb{R}^3) + \text{grad} C^{2,\alpha}(\overline{\Omega}) \subset C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^3)$.

End of the proof of Proposition 3.6.

When $\{\theta, \alpha\} := \min\{\theta, \alpha\} = \alpha$, since $v^*_K \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ and $\phi^*_K \in C^{3,\alpha}(\overline{\Omega})$, the proof is done.

When $\{\theta, \alpha\} = \theta$, since $A^*_K = v^*_K + \nabla \phi^*_K \in C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^3)$, it follows from (3.8) that $Q_K \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ and

\[
\|Q_K\|_{C^{2,\alpha}(\overline{\Omega})} \leq C(\|v^*_K\|_{C^{1,\alpha}(\Omega)} + \|\nabla \phi^*_K\|_{C^{1,\alpha}(\overline{\Omega})} + \|b\|_{C^{1,\alpha}(\overline{\Omega})}).
\]

By Lemma 3.14, $\psi_K \in C^{2,\theta}(\overline{\Omega}) \subset C^{1,\alpha}(\overline{\Omega})$. We consider the system (3.13). We note that $a_{ij} \in C^{0,\alpha}(\overline{\Omega})$ and $h \in C^{0,\alpha}(\overline{\Omega})$. Thus $\psi_K \in C^{2,\alpha}(\overline{\Omega})$ and

\[
\|\psi_K\|_{C^{2,\alpha}(\overline{\Omega})} \leq C(\|\psi_K\|_{C^{0,\alpha}(\Omega)} + \|h\|_{C^{0,\alpha}(\overline{\Omega})}) \leq C_2
\]
where C_2 depends on $\Omega, \alpha, \|f_K\|_{C^1([0, \infty))}, \|Q_K\|_{C^{1,\alpha}(\overline{\Omega})}$ and $\|\psi_K\|_{C^{1,\alpha}(\overline{\Omega})}$. Therefore we have $Q_K + \nabla \psi_K \in C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^3)$. So the right hand side of the first equation of (3.11) belongs to $C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^3)$. Hence from the regularity of the div-curl system (3.11), we see that $v_K^* \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ and

$$\|v_K^*\|_{C^{2,\alpha}(\overline{\Omega})} \leq C(\|\text{curl} A_K^*\|_{C^{1,\alpha}(\overline{\Omega})} + \|A_T^0\|_{C^{2,\alpha}(\overline{\Omega})}).$$

Therefore, from (3.12) we find $\phi_K^* \in C^{3,\alpha}(\overline{\Omega})$ and we can write

$$A_K^* = v_K^* + \nabla \phi_K^* \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3) + \text{grad} C^{3,\alpha}(\overline{\Omega}).$$

This completes the proof of Proposition 3.6.

Proposition 3.16. Let $0 < \alpha < 1$, $0 < K < b^2$ and $A_K^* = v_K^* + \nabla \phi_K^* \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3) + \text{grad} C^{3,\alpha}(\overline{\Omega}) \subset C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ be the minimizer of S_K^* in X^2. Then for any $0 < \sigma < \alpha$, we have

$$\lim_{n \to \infty} \|A_{K,n}^*\|_{C^{2,\alpha}(\overline{\Omega})} = 0.$$

Proof. Assume that the conclusion is false. Then there exist $0 < \sigma < \alpha$, $A_{0,n,T}^* \in C^{2,\alpha}(\partial \Omega, \mathbb{R}^3)$ and $b_n \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ such that $A_{0,n,T}^* \to 0$ in $C^{2,\alpha}(\partial \Omega, \mathbb{R}^3)$, $b_n \to 0$ in $C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ as $n \to \infty$ and

$$\lim_{n \to \infty} \|A_{K,n}^*\|_{C^{2,\alpha}(\overline{\Omega})} > 0 \quad (3.14)$$

where $A_{K,n}^*$ are corresponding solutions. By Proposition 3.6, $A_{K,n}^* \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ and $\{A_{K,n}^*\}$ is bounded in $C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$. Therefore there exist a subsequence $\{A_{K,n_j}^*\}$ and $A^0 \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ such that $A_{K,n_j}^* \to A^0$ in $C^{2,\sigma}(\overline{\Omega}, \mathbb{R}^3)$, $A^0 \neq 0$ in Ω from (3.14) and $A_{0,T}^* = 0$ on $\partial \Omega$. From (2.6), for any $H \in C^1(\overline{\Omega}, \mathbb{R}^3) := \{H \in C^0(\overline{\Omega}, \mathbb{R}^3); H_T = 0 \text{ on } \partial \Omega\}$, we have

$$\int_{\Omega} S_K^* (|\text{curl} A_{K,n_j}^*|^2) \text{curl} A_{K,n_j}^* \cdot \text{curl} H \, dx + \int_{\Omega} (M A_{K,n_j}^*) \cdot H \, dx + \int_{\Omega} b_{n_j} \cdot H \, dx = 0.$$

Letting $j \to \infty$, it follows that

$$\int_{\Omega} S_K^* (|A^0|^2) \text{curl} A^0 \cdot \text{curl} H \, dx + \int_{\Omega} (M A^0) \cdot H \, dx = 0.$$

If we put $H = A^0$ and note that $S_K^* > 0$ and the matrix M is positive definite, we obtain $A^0 = 0$. This leads to a contradiction. \qed
Proof of Theorem 1.1

Fix K such that $0 < K < b^2$, and construct the function S_K as in section 2. By Lemma 3.1, for any $A_0^T \in C^{2,\alpha}(\partial \Omega, \mathbb{R}^3)$ and $b \in C^{1,1}(\Omega, \mathbb{R}^3)$, the system (2.4) has a unique weak solution $A_K^* = v_K^* + \nabla \phi_K^* \in X^2$. By Proposition 3.6, we see that $A_K^* \in C^{2,\alpha}(\Omega, \mathbb{R}^3)$. Moreover, by Proposition 3.16, there exists $R_0 > 0$ such that if $\|A_0^T\|_{C^{2,\alpha}(\partial \Omega)} + \|b\|_{C^{1,1}(\Omega)} \leq R_0$, then $\|\text{curl } A_K^*\|_{C^0(\Omega)} \leq \sqrt{K}$.

Thus $S'_K(|\text{curl } A_K^*|^2) = S'(\text{curl } A_K^*)$. Hence A_K^* is a classical solution of (1.8). The uniqueness of classical solution satisfying $\|\text{curl } A_K^*\|_{C^0(\Omega)} \leq \sqrt{K}$ follows from the uniqueness of weak solution of the system (2.4).

Remark 3.17. When $F(x, A)$ is of the form $F(x, A) = a(x)|A|^2$ where $a(x) > 0$ is a scalar function, [6] showed that if the boundary data is small, then A_K^* is a classical solution of (1.8). However, in our case where $F(x, A)$ is of the form (1.7), in order to get a classical solution of (1.8), not only the boundary data but also the term b in (1.7) must be small.

4 The Neumann problem.

In this section, we consider the Neumann problem (2.5). Remember that the corresponding extended functional is

$$
\mathcal{H}^+_K[A] = \int_\Omega (S_K(|\text{curl } A|^2) + \langle M(x)A, A \rangle + b(x) \cdot A + c(x))dx + 2 \int_{\partial \Omega} (D_T \times A_T) \cdot \nu ds
$$

and the Euler-Lagrange equation is

$$
\begin{cases}
\text{curl } (S_K'(|\text{curl } A|^2)\text{curl } A) + M(x)A + b(x) = 0 & \text{in } \Omega, \\
S_K'(|\text{curl } A|^2)(\text{curl } A)_T = D_T & \text{on } \partial \Omega.
\end{cases}
$$

Define

$$
a(\mathcal{H}^+_K, D_T) = \inf_{A \in \mathcal{H}^2(\Omega, \text{curl})} \mathcal{H}^+_K[A].
$$

We can prove the following proposition as similar as [6].

Proposition 4.1. Let Ω be a bounded domain in \mathbb{R}^3 with a C^2 boundary and $D_T \in H^{1/2}(\partial \Omega)$. Then \mathcal{H}^+_K has a unique minimizer $A_K \in \mathcal{H}^2(\Omega, \text{curl})$.

Therefore the minimizer A_K is a weak solution of (4.2) in the sense of (2.7). We shall examine the regularity of the minimizer.
Proposition 4.2. Assume that $\Omega, M(x), b(x), c(x)$ and D_T satisfy (A1), (A2) and (A4) with $0 < \alpha < 1$, respectively, and let $0 < K < b^2$ and $A_K \in \mathcal{H}^2(\Omega, \text{curl})$ be a minimizer given in Proposition 4.1. Then

$$A_K = v_K + \nabla \phi_K \in C^{2,\alpha}_0(\Omega, \text{div} 0, \mathbb{R}^3) + \text{grad} C^{2,\alpha}_0(\Omega)$$

where

$$C^{2,\alpha}_0(\Omega, \text{div} 0, \mathbb{R}^3) = \{ A \in C^{2,\alpha}(\Omega); \text{div} A = 0 \text{ in } \Omega, v \cdot A = 0 \text{ on } \partial \Omega \}$$

and

$$\| v_K \|_{C^{2,\alpha}(\Omega)} + \| \nabla \phi_K \|_{C^{1,\alpha}(\Omega)} \leq C$$

where the constant C depends on $\Omega, \alpha, m_0, \| M \|_{C^{1,\alpha}(\Omega)}, K, \delta, \| D_T \|_{C^{2,\alpha}(\Omega)}$ and $\| b \|_{C^{1,\alpha}(\Omega)}$.

Corollary 4.3. In addition to the conditions of Proposition 4.2, assume that $S_K \in C^4([0, \infty)), f_K \in C^3([0, \infty))$ and $\partial \Omega$ is of class $C^{4,\alpha}$, and $M \in C^{2,\alpha}(\Omega, \mathbb{R}^3), b \in C^{2,\alpha}(\Omega, \mathbb{R}^3)$ and $v \cdot \text{curl} D_T \in C^{2,\alpha}(\Omega)$. Then

$$A_K = v_K + \nabla \phi_K \in C^{3,\alpha}(\Omega, \text{div} 0, \mathbb{R}^3) + \text{grad} C^{3,\alpha}(\Omega)$$

and

$$\| v_K \|_{C^{3,\alpha}(\Omega)} + \| \nabla \phi_K \|_{C^{2,\alpha}(\Omega)} \leq C$$

where C depends on $\Omega, \alpha, m_0, \| M \|_{C^{2,\alpha}(\Omega)}, \| b \|_{C^{2,\alpha}(\Omega)}, K, \delta, \| D_T \|_{C^{2,\alpha}(\Omega)}$ and $\| v \cdot \text{curl} D_T \|_{C^{2,\alpha}(\Omega)}$.

The proof of Proposition 4.2 consists of several lemmas.

The following two lemma are due to [6].

Lemma 4.4. Let Ω be a bounded domain in \mathbb{R}^3 with a C^2 boundary.

(i) Let $w \in L^2(\Omega, \mathbb{R}^3)$. Then $w \in H^2(\Omega, \text{div})$ if and only if there exists a constant $C > 0$ such that

$$\int_{\Omega} \nabla \eta \cdot w \, dx \leq C \| \eta \|_{L^2(\Omega)}$$

for all $\eta \in C^\infty_0(\Omega)$.

(ii) Let $f \in L^2(\Omega), g \in H^{-1/2}(\partial \Omega)$ and $w \in H^2(\Omega, \text{div})$. Then w satisfies the equation $\text{div} w = f$ in Ω, $v \cdot w = g$ on $\partial \Omega$ if and only if

$$\int_{\Omega} \nabla \eta \cdot w \, dx = - \int_{\Omega} \eta f \, dx + \langle \eta, g \rangle_{H^{1/2}(\partial \Omega), H^{-1/2}(\partial \Omega)}$$

for all $\eta \in C^1(\Omega)$ where $(\cdot, \cdot)_{H^{1/2}(\partial \Omega), H^{-1/2}(\partial \Omega)}$ denotes the duality of $H^{1/2}(\partial \Omega)$ and $H^{-1/2}(\partial \Omega)$. In this case the above equality also holds for any $\eta \in H^1(\Omega)$.

Lemma 4.5. Let Ω be a bounded domain in \mathbb{R}^3 without holes and with a C^2 boundary, and let $D_T \in H^{1/2}(\Omega)$. Let $D^e \in H^1(\Omega, \mathbb{R}^3)$ be a divergence-free extension of D_T. If $A_K \in \mathcal{H}^2(\Omega, \text{curl})$ is a minimizer of \mathcal{H}_K, then $M(x)A_K(x) + b(x) \in \mathcal{H}^2(\Omega, \text{div})$, $\nu \cdot (MA_K + b), \nu \cdot \text{curl} D^e \in H^{-1/2}(\partial \Omega)$, and

$$
\begin{aligned}
\left\{ \begin{array}{ll}
\text{div} (MA_K + b) = 0 & \text{in } \Omega, \\
\nu \cdot (MA_K + b) + \nu \cdot \text{curl} D^e = 0 & \text{on } \partial \Omega.
\end{array} \right.
\end{aligned}
$$

Proof. Since from (A2), $MA_K + b \in L^2(\Omega, \mathbb{R}^3)$ and from (4.2), we can see that $\text{div} (MA_K + b) = 0$ in Ω' and $(MA_K + b) \in \mathcal{H}^2(\Omega, \text{div} 0)$. Hence by Lemma 2.1, $\nu \cdot (MA_K + b) \in H^{-1/2}(\partial \Omega)$. Since $\text{curl} D^e \in L^2(\Omega, \mathbb{R}^3)$ and $\text{div} (\text{curl} D^e) = 0$ in Ω, we also have $\nu \cdot \text{curl} D^e \in H^{-1/2}(\partial \Omega)$. From (4.2), we have

$$
\begin{aligned}
\nu \cdot (MA_K + b) &= -\nu \cdot \text{curl} (S_K'(|\text{curl} A_K|^2)\text{curl} A_K) \\
&= -\nu \cdot \text{curl} (S_K'(|\text{curl} A_K|^2)(\text{curl} A_K)_T) \\
&= -\nu \cdot \text{curl} D^e.
\end{aligned}
$$

We consider the following div-curl system.

$$
\left\{ \begin{array}{ll}
\text{curl} P = -M(x)A_K(x) - b(x) & \text{in } \Omega, \\
\text{div} P = 0 & \text{in } \Omega, \\
P_T = D_T & \text{on } \partial \Omega.
\end{array} \right.
$$

(4.5)

Lemma 4.6. The system (4.5) has a unique solution $P_K \in H^1(\Omega, \text{div} 0)$.

Proof. If we put $\tilde{P} = P - D^e$, then we see that (4.5) has a solution $P_K \in H^1(\Omega, \text{div} 0)$ if and only if the system

$$
\left\{ \begin{array}{ll}
\text{curl} P = -M(x)A_K(x) - b(x) - \text{curl} D^e & \text{in } \Omega, \\
\text{div} P = 0 & \text{in } \Omega, \\
P_T = 0 & \text{on } \partial \Omega.
\end{array} \right.
$$

(4.6)

has a solution $\tilde{P}_K \in H^1_{10}(\Omega, \text{div} 0)$. In fact, Since Ω is simply connected, it follows from [8, Proposition 4 and Remark 5] that

$$
\{ u \in L^2(\Omega, \mathbb{R}^3); \text{div} u = 0 \text{ in } \Omega, \nu \cdot u = 0 \text{ on } \partial \Omega \} = \text{curl} H^1_{10}(\Omega, \mathbb{R}^3) = \text{curl} H^1_{10}(\Omega, \text{div} 0).
$$

If we note that from Lemma 4.5,

$$
\text{div} (MA_K + b + \text{curl} D^e) = \text{div} (MA_K + b) = 0 \text{ in } \Omega,
$$

and $\nu \cdot (MA_K + b + \text{curl} D^e) = 0$ on $\partial \Omega$, then we see that (4.6) has a solution $\tilde{P}_K \in H^1_{10}(\Omega, \text{div} 0)$. Since Ω has no holes, the uniqueness of solution of (4.5) follows.

\square
Let \(A_K \in \mathcal{H}^2(\Omega, \text{curl}) \) be a minimizer of \(\mathcal{H}^+_{K_0} \). Then we can decompose \(A_K \) so that \(A_K = v_K + \nabla \phi_K \) where \(v_K \in \mathcal{H}^2_{K_0}(\Omega, \text{curl}, \text{div} 0) := \{ v \in \mathcal{H}^2(\Omega, \text{curl}, \text{div}); \text{div} v = 0 \text{ in } \Omega, v \cdot \nu = 0 \text{ on } \partial \Omega \} \) and \(\phi_K \in H^1(\Omega) \). In fact, since \(\Omega \) is simply connected and has no holes, the following div-curl system

\[
\begin{aligned}
\text{curl} v &= \text{curl} A_K \quad \text{in } \Omega, \\
\text{div} v &= 0 \quad \text{in } \Omega, \\
v \cdot \nu &= 0 \quad \text{on } \partial \Omega
\end{aligned}
\]

has a unique solution \(v_K \in H^1(\Omega, \mathbb{R}^3) \) (cf. [15, Lemma 5.7] or [1, Theorem 3.3]). Since \(\text{curl}(A_K - v_K) = 0 \) in \(\Omega \) and \(\Omega \) is simply connected, there exists a function \(\phi_K \in H^1(\Omega) \) such that \(A_K = v_K + \nabla \phi_K \).

Lemma 4.7. If \(\nu \cdot \text{curl} D_T \in H^{1/2}(\partial \Omega) \), then \(\phi_K \in H^2(\Omega) \) and

\[
\| \nabla \phi_K \|_{H^2(\Omega)} \leq C(\| v_K \|_{L^2(\Omega)} + \| \nu \cdot \text{curl} D_T \|_{H^{1/2}(\partial \Omega)} + \| b \|_{H^1(\Omega)})
\]

where \(C \) depends on \(\Omega, m_0 \) and \(\| M \|_{C^1(\overline{\Omega})} \).

Proof. Taking (4.2) into consideration, we see that \(\phi_K \) satisfies the following Neumann equation

\[
\begin{aligned}
\text{div} (M(x)\nabla \phi) &= -\text{div} (M(x)v_K) - \text{div} b \quad \text{in } \Omega, \\
v \cdot (M(x)\nabla \phi) &= -\nu \cdot \text{curl} D_T - \nu \cdot (Mv_K) - \nu \cdot b \quad \text{on } \partial \Omega.
\end{aligned}
\]

We note that the compatibility condition holds. By [10, p. 160] or Murata and Kurata [14, Theorem 2.38], we see that \(\phi_K \in H^2(\Omega) \) and

\[
\begin{aligned}
\| \phi_K \|_{H^2(\Omega)} &\leq C(\| \phi_K \|_{L^2(\Omega)} + \| \text{div} (Mv_K) \|_{L^2(\Omega)} + \| \text{div} b \|_{L^2(\Omega)}) \\
&+ \| \nu \cdot \text{curl} D_T \|_{H^{1/2}(\partial \Omega)} + \| \nu \cdot (Mv_K) \|_{H^{1/2}(\partial \Omega)} \\
&+ \| \nu \cdot b \|_{H^{1/2}(\partial \Omega)}) \\
&\leq C_1(\| \phi_K \|_{L^2(\Omega)} + \| v_K \|_{H^1(\Omega)} + \| b \|_{H^1(\Omega)}) \\
&+ \| \nu \cdot \text{curl} D_T \|_{H^{1/2}(\partial \Omega)})
\end{aligned}
\]

where \(C_1 \) depends on \(\Omega, m_0 \) and \(\| M \|_{C^1(\overline{\Omega})} \). We may assume that \(\int_{\Omega} \phi_K dx = 0 \). Then we can remove the term \(\| \phi_K \|_{L^2(\Omega)} \) in the right hand side of the above inequality by the same reason as Remark 3.4. \(\square \)

We examine the regularity of \(P_K \).

Lemma 4.8. Assume that \(\Omega \) is simply connected bounded domain in \(\mathbb{R}^3 \) without holes, and with a \(C^3 \) boundary. Let \(P_K \in H^1(\Omega, \text{div} 0) \) be a unique solution of (4.5). Then \(P_K \in H^2(\Omega, \text{div} 0) \) and

\[
\| P_K \|_{H^2(\Omega)} \leq C(\| \text{curl} A_K \|_{L^2(\Omega)} + \| D_T \|_{H^{3/2}(\partial \Omega)} + \| \nu \cdot \text{curl} D_T \|_{H^{1/2}(\partial \Omega)})
\]

where \(C \) depends on \(\Omega, m_0 \) and \(\| M \|_{C^1(\overline{\Omega})} \).
Proof. Since $v_K \in H^1_{\text{div}}(\Omega, \text{div} 0)$ and Ω is simply connected, it follows from [8] that

$$\|v_K\|_{H^1(\Omega)} \leq C(\Omega) \|\text{curl } v_K\|_{L^2(\Omega)} = C(\Omega) \|\text{curl } A_K\|_{L^2(\Omega)}. \quad (4.9)$$

By Lemma 4.7 and (4.9), $M A_K + b = M(v_K + \nabla \phi_K) + b \in H^1(\Omega, \mathbb{R}^3)$, and

$$\|M A_K + b\|_{H^1(\Omega)} \leq C(\Omega, \|M\|_{C^1(\Omega)}) (\|v_K\|_{H^1(\Omega)} + \|
abla \phi_K\|_{H^1(\Omega)})$$

$$+ \|b\|_{H^1(\Omega)} \leq C(\Omega, \|M\|_{C^1(\Omega)}) (\|A_K\|_{H^1(\Omega)} + \|b\|_{H^1(\Omega)})$$

+ $\|D_T\|_{H^{3/2}(\partial \Omega)}$.

By the regularity of the div-curl system (4.5), we see that $P_K \in H^2(\Omega, \mathbb{R}^3)$ and the concluding estimate holds.

By the similar arguments as section 3, there exists a function $\psi_K \in H^1(\Omega)$ such that

$$S'_K(|\text{curl } v_K|^2) \text{curl } v_K = P_K + \nabla \psi_K.$$

Since

$$D_T = S'_K(|\text{curl } A_K|^2)(\text{curl } A_K) = (P_K + \nabla \psi_K)_T = D_T + (\nabla \psi)_T,$$

we have $(\nabla \psi_K)_T = 0$. Since $\partial \Omega$ is connected as Ω has no holes, we may assume that $\psi_K = 0$ on $\partial \Omega$. Thus from (2.11) ψ_K is a weak solution of the following equation.

$$\begin{cases} \text{div } (f_K(|P_K + \nabla \psi|^2)(P_K + \nabla \psi)) = 0 & \text{in } \Omega, \\ \psi = 0 & \text{on } \partial \Omega. \end{cases} \quad (4.10)$$

Similarly as (3.10), we have

$$\begin{cases} \text{curl } v_K = \text{curl } A_K = f_K(|P_K + \nabla \psi_K|^2)(P_K + \nabla \psi_K) & \text{in } \Omega, \\ \text{div } v_K = 0 & \text{in } \Omega, \\ \nu \cdot v_K = 0 & \text{on } \partial \Omega. \end{cases} \quad (4.11)$$

We examine $W^{1,q}$ regularity of ψ_K.

Lemma 4.9. Under the condition of Lemma 4.8, we have $\psi_K \in W^{1,q}(\Omega)$ for any $1 < q < \infty$ and

$$\|\psi_K\|_{W^{1,q}(\Omega)} \leq C(a_K + \|\text{curl } A_K\|_{L^2(\Omega)} + \|D_T\|_{H^{3/2}(\partial \Omega)})$$

$$+ \|\nu \cdot \text{curl } D_T\|_{H^{1/2}(\partial \Omega)} + \|b\|_{H^1(\Omega)}.$$

where C depends on $\Omega, q, K, \delta, d_0, \|M\|_{C^1(\Omega)}$ and m_0.
Since the proof is similar as that of Lemma 3.8, we omit it.

We note that by the Sobolev embedding theorem $W^{1,q}(\Omega) \hookrightarrow C^{0,\tau}(\Omega)$ for $\tau = 1 - 3/q > 0$, so we have $\psi_K \in C^{0,\tau}(\Omega)$ for any $\tau \in (0, 1)$ and $\|\psi_K\|_{C^{0,\tau}(\Omega)} \leq C(\Omega, \tau)\|\psi_K\|_{W^{1,q}(\Omega)}$.

We examine $W^{1,q}$ regularity of v_K.

Lemma 4.10. Under the condition of Lemma 4.8, we have $v_K \in W^{1,q}(\Omega, \mathbb{R}^3)$ for any $1 < q < \infty$ and

$$\|v_K\|_{W^{1,q}(\Omega)} \leq C(\Omega, q)\|\text{curl} A_K\|_{L^2(\Omega)} \leq C(\Omega, q)d_0\|P_K + \nabla \psi_K\|_{L^q(\Omega)}.$$

In particular, $v_K \in C^{0,\tau}(\Omega)$ for any $\tau \in (0, 1)$ and

$$\|v_K\|_{C^{0,\tau}(\Omega)} \leq C(\Omega, \tau)\|v_K\|_{W^{1,q}(\Omega)}.$$

Proof. By Lemma 4.8 and 4.9, we see that $P_K + \nabla \psi_K \in L^q(\Omega)$ for any $1 < q < \infty$. Thus

$$\text{curl} A_K = f_K(|P_K + \nabla \psi_K|^2)(P_K + \nabla \psi_K) \in L^q(\Omega, \mathbb{R}^3).$$

Since $v_K \in H^1(\Omega, \mathbb{R}^3)$ is a unique solution of (4.7) and Ω is simply connected, it follows from the regularity of div-curl system (4.7) (cf. [1]) that $v_K \in W^{1,q}(\Omega, \mathbb{R}^3)$ and

$$\|v_K\|_{W^{1,q}(\Omega)} \leq C(\Omega, q)\|\text{curl} A_K\|_{L^q(\Omega)} \leq C(\Omega, q)d_0\|P_K + \nabla \psi_K\|_{L^q(\Omega)}.$$

\[\square\]

Proof of Proposition 4.2.

Step 1. $C^{1,\tau}$ estimate of ϕ_K.

We know that $\phi_K \in H^2(\Omega)$ is a solution of (4.8). Since $v_K \in W^{1,q}(\Omega, \mathbb{R}^3)$ for any $1 < q < \infty$ from Lemma 4.10, we see that $\text{div}(Mv_K) + \text{div} b \in L^2(\Omega)$, and by the hypotheses and Lemma 4.10, we see that $v \cdot \text{curl} D_T - v \cdot (Mv_K) - \nu \cdot b \in W^{1-1/q, q}(\partial \Omega)$. Therefore we get $\phi_K \in W^{2,q}(\Omega) \hookrightarrow C^{1,1-3/q}(\Omega)$ for $1 - 3/q > 0$. Since q is arbitrary, $\phi_K \in C^{1,\tau}(\Omega)$ for any $\tau \in (0, 1)$, and

$$\|\phi_K\|_{C^{1,\tau}(\Omega)} \leq C(\Omega, \tau, q)(\|\phi_K\|_{L^q(\Omega)} + \|v_K\|_{W^{1,q}(\Omega)} + \|b\|_{W^{1,q}(\Omega)} + \|v \cdot \text{curl} D_T\|_{W^{1-1/q, q}(\partial \Omega)}). \quad (4.12)$$

We can remove $\|\phi_K\|_{L^q(\Omega)}$ in the right hand side by using Lemma 4.7 and the Poincaré inequality.

Step 2. $C^{1,\tau}$ estimate of P_K.

By Lemma 4.10 and Step 1, for any \(0 < \tau < 1\), \(MA_K = M(v_K + \nabla \phi_K) \in C^{0,\tau}(\Omega, \mathbb{R}^3)\). Since \(P_K\) is a solution of the div-curl system (4.5), it follows from \([15]\) that \(P_K \in C^{1,\tau}(\Omega, \mathbb{R}^3)\) and

\[
\|P_K\|_{C^{1,\tau}(\Omega)} \leq C(\Omega, \tau)\|MA_K + b\|_{C^{0,\tau}(\Omega)} + \|D_T\|_{C^{1,\tau}(\partial\Omega)}
\]

\[
\leq C(\|v_K\|_{C^{0,\tau}(\Omega)} + \|\nabla \phi_K\|_{C^{0,\tau}(\Omega)} + \|b\|_{C^{0,\tau}(\Omega)} + \|D_T\|_{C^{1,\tau}(\partial\Omega)})
\]

where \(C\) depends on \(\Omega, \tau\) and \(\|M\|_{C^{0,\tau}(\Omega)}\).

Step 3. \(C^{1,\theta}\) estimate of \(\psi_K\) for some \(\theta \in (0, 1)\).

We consider the equation (4.10). By Step 2, we see that

\[
A(x, z) = f_K(|P_K(x) + z|^2)(P_K(x) + z) \in C^{1,\tau}(\Omega \times \mathbb{R}^3, \mathbb{R}^3).
\]

By (2.14), we have

\[
\sum_{i,j=1}^3 \frac{\partial A_i}{\partial z_j}(x, z) \xi_i \xi_j \geq \lambda |\xi|^2
\]

for all \(\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3\) where \(\lambda = \lambda(K, \delta)\), and by the properties of \(f_K\), we have

\[
(1 + |z|^2) \left| \frac{\partial A_i}{\partial z_j}(x, z) \right| + (1 + |z|) \left(\left| \frac{\partial A_i}{\partial x_j}(x, z) \right| + |A_i(x, z)| \right) \leq \Lambda(1 + |z|^2)
\]

for some \(\Lambda > 0\). According to \([10, \text{Chapter 4, Theorem 6.5}]\), there exists \(\theta \in (0, 1)\) and \(C > 0\) depending on \(\Omega, \|P_K\|_{C^{1,\theta}(\Omega)}, \|\psi_K\|_{C^{0,\theta}(\Omega)}, \lambda\) and \(\Lambda\) such that \(\psi_K \in C^{1,\theta}(\Omega)\) and \(\|\psi_K\|_{C^{1,\theta}(\Omega)} \leq C\).

Step 4. \(C^{1,\theta}\) estimate of \(A_K\).

Since by Step 2 and 3, \(P_K + \nabla \psi_K \in C^{0,\theta}(\Omega, \mathbb{R}^3)\), it follows from the regularity of the div-curl system (4.11) that we see that \(v_K \in C^{1,\theta}(\Omega, \mathbb{R}^3)\) and

\[
\|v_K\|_{C^{1,\theta}(\Omega)} \leq C(\Omega, \theta)\|A_K\|_{C^{0,\theta}(\Omega)}
\]

\[
\leq C(\|P_K\|_{C^{0,\theta}(\Omega)} + \|\nabla \psi_K\|_{C^{0,\theta}(\Omega)})
\]

where \(C\) depends on \(\Omega, \theta, f_K\). Here we used the first equation of (4.11). If we return to the equation (4.8) and apply the Schauder theory, then we see \(\phi_K \in C^{2,\theta}(\Omega)\) and

\[
\|\phi_K\|_{C^{2,\theta}(\Omega)} \leq C(\|v_K\|_{C^{1,\theta}(\Omega)} + \|b\|_{C^{1,\theta}(\Omega)} + \|\nu \cdot \text{curl} D_T\|_{C^{1,\theta}(\partial\Omega)} + \|\phi_K\|_{C^{0}(\Omega)})
\]

Thus we have \(A_K = v_K + \nabla \phi_K \in C^{1,\theta}(\Omega, \mathbb{R}^3)\) and

\[
\|A_K\|_{C^{1,\theta}(\Omega)} \leq C(\|P_K\|_{C^{0,\theta}(\Omega)} + \|\nabla \psi_K\|_{C^{0,\theta}(\Omega)} + \|b\|_{C^{1,\theta}(\Omega)} + \|\nu \cdot \text{curl} D_T\|_{C^{1,\theta}(\partial\Omega)})
\]
where C depends on Ω, θ, f_K, m_0 and $\|M\|_{C^{1,1}(\overline{\Omega})}$.

Step 5. $C^{2,\theta}$ estimate of ψ_K.
By Step 4 and the regularity of the div-curl system (4.5), we see that $P_K \in C^{2,\theta}(\overline{\Omega}, \mathbb{R}^3)$ and

$$
\|P_K\|_{C^{2,\theta}(\overline{\Omega})} \leq C(\|A_K\|_{C^{1,\theta}(\overline{\Omega})} + \|b\|_{C^{1,\theta}(\overline{\Omega})} + \|D_T\|_{C^{2,\theta}(\partial\Omega)})
$$

where C depends on Ω, θ and $\|M\|_{C^{1,1}(\overline{\Omega})}$. We rewrite the equation (4.10) into the form

$$
\begin{cases}
\sum_{i,j=1}^3 a_{ij}(x) \frac{\partial^2 \psi_K}{\partial x_i \partial x_j} = h(x) & \text{in } \Omega, \\
\psi_K = 0 & \text{on } \partial \Omega
\end{cases}
$$

(4.13)

where

$$
a_{ij}(x) = f_K(\|P_K + \nabla \psi_K\|^2) \delta_{ij} + 2f_K'(\|P_K + \nabla \psi_K\|^2)(P_{K,i} + \partial_i \psi_K)(P_{K,j} + \partial_j \psi_K),
$$

$$
h(x) = -2f_K'(\|P_K + \nabla \psi_K\|^2) \langle \nabla P_K(P_K + \nabla \psi_K), P_K + \nabla \psi_K \rangle - f_K(\|P_K + \nabla \psi_K\|^2) \text{div } P_K.
$$

Since $a_{ij}, h \in C^{0,\theta}(\overline{\Omega})$ and (4.13) is uniformly elliptic with lower bound $\lambda = \lambda(K, \delta) > 0$ from (2.14), we see that $\psi_K \in C^{2,\theta}(\overline{\Omega})$ and

$$
\|\psi_K\|_{C^{2,\theta}(\overline{\Omega})} \leq C\|h\|_{C^{0,\theta}(\overline{\Omega})} \leq C_1
$$

where C_1 depends on Ω, θ, $\|P_K\|_{C^{1,\theta}(\overline{\Omega})}$, $\|\nabla \psi_K\|_{C^{0,\theta}(\overline{\Omega})}$, f_K and f'_K.

Step 6. $C^{2,\theta}$ estimate of v_K.
By Step 2 and 5, $P_K + \nabla \psi_K \in C^{1,\theta}(\overline{\Omega}, \mathbb{R}^3)$. By the regularity of div-curl system (4.11), we see that $v_K \in C^{2,\theta}(\overline{\Omega}, \mathbb{R}^3)$ and $\|v_K\|_{C^{2,\theta}(\overline{\Omega})} \leq C(\Omega, \theta)\|\text{curl } A_K\|_{C^{1,\theta}(\overline{\Omega})}$. In particular, since $v_K \in C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^3)$, it follows form (4.8) that $\phi_K \in C^{2,\alpha}(\overline{\Omega})$ and

$$
\|\phi_K\|_{C^{2,\alpha}(\overline{\Omega})} \leq C(\|v_K\|_{C^{1,\alpha}(\overline{\Omega})} + \|b\|_{C^{1,\alpha}(\overline{\Omega})} + \|\nu \cdot \text{curl } D_T\|_{C^{1,\alpha}(\overline{\Omega})})
$$

where C depends on Ω, α and $\|M\|_{C^{1,\alpha}(\overline{\Omega})}$.

End of the proof of Proposition 4.2.
We have $A_K = v_K + \nabla \phi_K \in C^{2,\theta}(\overline{\Omega}, \mathbb{R}^3) + \text{grad} C^{2,\alpha}(\overline{\Omega}) \subset C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^3)$.

When $\{\theta, \alpha\} = \alpha$, the proof is done.

When $\{\theta, \alpha\} = \theta$, since $A_K \in C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ and $D_T \in C^{2,\alpha}(\partial \Omega, \mathbb{R}^3)$, taking (4.5) into consideration we see that $P_K \in C^{2,\alpha}(\overline{\Omega}, \mathbb{R}^3)$ and

$$
\|P_K\|_{C^{2,\alpha}(\overline{\Omega})} \leq C(\|v_K\|_{C^{1,\alpha}(\overline{\Omega})} + \|\nabla \phi_K\|_{C^{1,\alpha}(\overline{\Omega})} + \|D_T\|_{C^{2,\alpha}(\partial\Omega)})
$$

where C depends on Ω, α and $\|M\|_{C^{1,\alpha}(\overline{\Omega})}$. Therefore from (4.13), $\psi_K \in C^{2,\alpha}(\overline{\Omega})$ and $\|\psi_K\|_{C^{2,\alpha}(\overline{\Omega})} \leq C\|h\|_{C^{0,\alpha}(\overline{\Omega})} \leq C_1$ where C_1 depends $\Omega, \|P_K\|_{C^{1,\alpha}(\overline{\Omega})}, \|\nabla \psi_K\|_{C^{0,\alpha}(\overline{\Omega})}, \lambda$.

and \(A \). Thus \(P_K + \nabla \psi_K \in C^{1,\alpha}(\Omega, \mathbb{R}^3) \). From (4.7), we see that \(\nu_K \in C^{2,\alpha}(\Omega, \mathbb{R}^3) \) and

\[
\| \nu_K \|_{C^{2,\alpha}(\Omega)} \leq C(\Omega, \alpha) \| \nabla A_K \|_{C^{1,\alpha}(\Omega)}.
\]

(4.14)

Hence we can write \(A_K = \nu_K + \nabla \phi_K \in C^{2,\alpha}(\Omega, \mathbb{R}^3) + \text{grad}C^{2,\alpha}(\Omega) \). This completes the proof of Proposition 4.2.

Proof of Corollary 4.3.

First we consider the equation (4.8). By the hypotheses and (4.14), \(-\text{div}(M\nu_K) - \text{div} b \in C^{1,\alpha}(\Omega)\) and \(-\nu \cdot D_T - \nu \cdot b \in C^{2,\alpha}(\Omega)\). Since \(\partial \Omega \) is of class \(C^{4,\alpha} \), we have \(\phi_K \in C^{3,\alpha}(\Omega) \) and

\[
\| \phi_K \|_{C^{3,\alpha}(\Omega)} \leq C(\| \nu_K \|_{C^{2,\alpha}(\Omega)} + \| b \|_{C^{2,\alpha}(\Omega)} + \| \nu \cdot \text{curl} D_T \|_{C^{2,\alpha}(\Omega)}).
\]

Next consider the equation (4.13). Since \(P_K \in C^{2,\alpha}(\Omega, \mathbb{R}^3) \) and \(\psi_K \in C^{2,\alpha}(\Omega, \mathbb{R}^3) \), we have \(h \in C^{1,\alpha}(\Omega) \). Therefore by the Schauder theory we have \(\psi_K \in C^{3,\alpha}(\Omega) \) and \(\| \psi_K \|_{C^{3,\alpha}(\Omega)} \leq C \| h \|_{C^{1,\alpha}(\Omega)} \leq C_1 \) where \(C_1 \) depends on \(\Omega, \alpha, \| P_K \|_{C^{2,\alpha}(\Omega)}, \| \psi_K \|_{C^{2,\alpha}(\Omega)}, f_K, f'_K \) and \(f''_K \).

Finally we consider the equation (4.11). Since \(f_K(\| P_K + \nabla \psi_K \|^2)(P_K + \nabla \psi_K) \in C^{2,\alpha}(\Omega, \mathbb{R}^3) \), it follows from the regularity estimate of the div-curl system (4.12) that we get \(\nu_K \in C^{3,\alpha}(\Omega, \mathbb{R}^3) \) and

\[
\| \nu_K \|_{C^{3,\alpha}(\Omega)} \leq C(\| P_K \|_{C^{2,\alpha}(\Omega)} + \| \nabla \psi_K \|_{C^{2,\alpha}(\Omega)}),
\]

where \(C \) depends on \(\Omega, \alpha \) and \(\| f_K \|_{C^{2,\alpha}} \). Hence we can write

\[
A_K = \nu_K + \nabla \phi_K \in C^{3,\alpha}(\Omega, \text{div} 0, \mathbb{R}^3) + \text{grad}C^{3,\alpha}(\Omega).
\]

This completes the proof of Corollary 4.3.

Proposition 4.11. Assume that \(\Omega, M(x), b(x) \) and \(D_T \) satisfy (A1), (A2) and (A4) with \(0 < \alpha < 1 \), respectively. Let \(A_K = \nu_K + \nabla \phi_K \in C^{1,\alpha}(\Omega, \text{div} 0, \mathbb{R}^3) + \text{grad}C^{2,\alpha}(\Omega) \) be a solution of (4.2). Then for any \(0 < \sigma < \alpha \), we have

\[
\lim_{\| D_T \|_{C^{2,\alpha}(\partial \Omega)} + \| b \|_{C^{1,\alpha}(\Omega)} \rightarrow 0} \| A_K \|_{C^{1,\sigma}(\Omega)} = 0.
\]

Proof. Assume that the conclusion is false. Then there exist \(0 < \sigma < \alpha \), \(D_{n,T} \in C^{2,\alpha}(\partial \Omega, \mathbb{R}^3) \) and \(b_n \in C^{1,\alpha}(\Omega, \mathbb{R}^3) \) such that \(D_{n,T} \rightarrow 0 \) in \(C^{2,\alpha}(\partial \Omega, \mathbb{R}^3) \), \(b_n \rightarrow 0 \) in \(C^{1,\alpha}(\Omega, \mathbb{R}^3) \) and

\[
\liminf_{n \rightarrow \infty} \| A_{K,n} \|_{C^{1,\sigma}(\Omega)} > 0
\]

(4.15)

where \(A_{K,n} = \nu_{K,n} + \nabla \phi_{K,n} \) are corresponding solutions of (4.2) with \(b = b_n \) and \(D_T = D_{n,T} \), and \(\nu_{K,n} \in C^{1,\alpha}(\Omega, \text{div} 0, \mathbb{R}^3) \) and \(\phi_{K,n} \in C^{2,\alpha}(\Omega) \). Then from
the above estimates, we see that \(\{v_{K,n}\} \) and \(\{\phi_{K,n}\} \) are bounded in \(C^{2,\alpha}(\Omega, \mathbb{R}^3) \) and \(C^{2,\alpha}(\Omega) \), respectively. Since \(0 < \sigma < \alpha \), passing to a subsequences, we may assume that \(A_{K,n} \to A^1 \) in \(C^{1,\sigma}(\Omega, \mathbb{R}^3) \). From (4.15), we have \(\|A^1\|_{C^{1,\sigma}(\Omega)} > 0 \).

If we take the inner product of the first equation of (4.2) with any \(H \in C^{1}(\Omega, \mathbb{R}^3) \), and then using the integration of parts, we have

\[
\int_{\Omega} S'_K(|\text{curl } A_{K,n}|^2) \text{curl } A_{K,n} \cdot \text{curl } H \, dx + \int_{\Omega} M A_{K,n} \cdot H \, dx \\
+ \int_{\Omega} b_n \cdot H \, dx + \int_{\partial\Omega} (D_{n,T} \times H_T) \cdot \nu \, dS = 0.
\]

Letting \(n \to \infty \), we get

\[
\int_{\Omega} S'_K(|\text{curl } A^1|^2) \text{curl } A^1 \cdot \text{curl } H \, dx + \int_{\Omega} M A^1 \cdot H \, dx = 0.
\]

Choosing \(H = A^1 \), it follows from the positivity of \(S'_K \) and positively definite-ness of the matrix \(M \) that \(A^1 = 0 \). This contradicts (4.15).

Proof of Theorem 1.3.

By Proposition 4.11, there exists a constant \(R_2 > 0 \) such that if \(\|D_T\|_{C^{2,\alpha}(\partial\Omega)} + \|b\|_{C^{1,\alpha}(\Omega)} \leq R_2 \), then \(\|\text{curl } A_K\|_{C^0(\Omega)} \leq \sqrt{K} \). Therefore \(A_K = v_K + \nabla \phi_K \in C^{2,\alpha}(\Omega, \text{div } 0, \mathbb{R}^3) + \text{grad} C^{2,\alpha}(\Omega) \) is a solution of (1.9). The uniqueness follows from the uniqueness of the weak solution of (4.2).

Remark 4.12. As similar as Remark 3.17, in our case where \(F(x, A) \) is of the form (1.7), in order to get a classical solution of (1.9), not only the boundary data but also the term \(b \) in (1.7) must be small.

References

2253-2284.

[7] Chen, Y- Z. and Wu, L- C., Second order elliptic equations and elliptic

Method for Science and Technology Vol. 3, Springer Verlag, New York,

[10] Ladyzhenskaya, O. A. and Ural’tzeva, N. N., Linear and Quasilinear El-

Scuola Norm. Sup. Pisa, XVI (1962), 1-44.

[12] Monneau, R., Quasilinear elliptic system arising in a three-dimensional
type II superconductor for infinite Κ, Nonlinear Anal. 52 (2003), 917–930.

[15] Pan, X- B., Nucleation of instability of Meissner state of superconduct-
itivity and related mathematical problems, Trends of Partial Differential

Received: March 29, 2014