Abstract

Given two vertices u and v of a connected graph G, the closed interval $I_G[u,v]$ is that set of all vertices lying in some u-v geodesic in G. If $S \subseteq V(G)$, then $I_G[S] = \cup\{I_G[u,v] : u, v \in S\}$. Let $v_i \in V(G)$ for $i = 1, 2, ..., n$. We select vertices of G as follows: Select v_1 and let $S_1 = \{v_1\}$. Select another vertex $v_2 \neq v_1$ and let $S_2 = \{v_1, v_2\}$. Then successively select vertex $v_k \in S_k' - 1$ and let

$$S_k = S_{k-1}' \cup \{v_k\} \cup \{u \in V(G) : u \in I_G[v_k, w] \text{ for some } w \in S_{k-1}'\}.$$

The sequential geodetic number of G, denoted by $sgn(G)$, is the smallest k such that there is a sequence $\langle v_1, v_2, ..., v_k \rangle$ for which $S_k = V(G)$. The set $S = S_k' = \{v_1, v_2, ..., v_k\}$ with $v_1, v_2, ..., v_k \in S_k'$ for which $S_k = V(G)$ is a sequential geodetic cover of G. The sequential geodetic number is again inspired by the achievement and avoidance games. In this paper, some connected graphs G with $sgn(G)$ equals $|V(G)| - 1$ and those equal to $|V(G)|$ are characterized. It is shown that the geodetic number (gn), closed geodetic number (cgn) and the sequential geodetic number (sgn) coincide for some particular graphs. Further, for the complete bipartite graph $K_{m,n}$ these three graph invariants are determined.
1 Introduction

Let G be a connected graph. A u-v geodesic, for vertices u and v in G, is any shortest path in G joining u and v. The length of a u-v geodesic is called the distance $d_G(u, v)$ between u and v. If $S \subseteq V(G)$, we define the closure of S, to be the set $I_G[S]$ given by $I_G[S] = \bigcup \{I_G[u, v] : u, v \in S\}$. By a geodetic cover of G we mean a subset S of $V(G)$ such that $I_G[S] = V(G)$. The number $gn(G)$ given by $gn(G) = \min\{|S| : I_G[S] = V(G)\}$ is called the geodetic number of G. A geodetic cover S of G with $|S| = gn(G)$ is called the geodetic basis of G. A subset S of $V(G)$ is said to be a closed geodetic subset if there is a positive integer k and a sequence of sets $S_1 = \{v_1\}$, $S_2 = \{v_1, v_2\}$, ..., $S_k = \{v_1, v_2, \ldots, v_k\}$ such that $S_k = S$ and $v_i \notin I_G[S_{i-1}]$ for all $i = 3, 4, \ldots, k$. A geodetic cover S of G is called a closed geodetic cover of G if S is a closed geodetic subset of $V(G)$. In this case, we refer to the set S_k being a canonical representation of S. We denote by $C^*(G)$ the set of all closed geodetic covers of G. The closed geodetic number $cgn(G)$ of G is given by

$$cgn(G) = \min\{|S| : S \in C^*(G)\}.$$

Some results concerning closed geodetic numbers of graphs are found in [?]

2 Sequential Geodetic Number of Some Graphs

For the purpose of this study, the following definitions of a geodetic sequence, sequential geodetic cover and sequential geodetic basis are introduced.

Definition 2.1 Let G be a connected graph. A sequence $\langle v_1, v_2, \ldots, v_k \rangle$ of the vertices in G is a geodetic sequence if it generates a sequence S_1, S_2, \ldots, S_k of subsets of $V(G)$ satisfying the following: (1) $v_1 \neq v_2$ for which $S_1 = \{v_1\}$ and $S_2 = \{v_1, v_2\}$; (2) $v_i \notin S_{i-1}'$ for $3 \leq i \leq k$, with $S_{i-1}' = \{v_1, v_2, \ldots, v_{i-1}\}$ that determines $\langle v_1, v_2, \ldots, v_k \rangle$ for which

$$S_i = S_{i-1}' \cup \{v_i\} \cup \{u \in V(G) : u \in I_G[v_i, w] \text{ for some } w \in S_{i-1}'\}.$$

The sequence S_1, S_2, \ldots, S_k of subsets of $V(G)$ satisfies the set inclusion

$$S_1 \subseteq S_2 \subseteq S_3 \subseteq \ldots \subseteq S_k.$$

Since $V(G)$ is finite, there exists an integer k such that $S_k = V(G)$.

Definition 2.2 Let G be a connected graph of order n. A subset $S = \{v_1, v_2, \ldots, v_k\}$ of $V(G)$ is a sequential geodetic cover of G if $\langle v_1, v_2, \ldots, v_k \rangle$ is a geodetic sequence in G and $S_k = V(G)$. We denote by $S^*(G)$ the collection of all
sequential geodetic covers of G. A sequential geodetic cover of minimum cardinality is called sequential geodetic basis of G. The sequential geodetic number $sgn(G)$ of a graph G is the cardinality of a sequential basis, that is,

$$sgn(G) = \min\{|S| : S \in S^*(G)\}.$$

Equivalently, $sgn(G) = \min\{k \in \mathbb{Z}^+ : S_k = V(G)\}$. If $S \in S^*(G)$, then there exists a $k \in \mathbb{Z}^+$ such that $\langle v_1, v_2, \ldots, v_k \rangle$ is a geodetic sequence and $S_k = V(G)$.

Remark 2.3 In view of Definition 2.1, $S_k = S_{k-1}' \cup \{v_k\} \cup (I_G[v_k, w])$ where $w \in S_{k-1}'$, $3 \leq k \leq n$ and $S_2 = S_2'$.

Remark 2.4 For a connected graph G of order $n \geq 3$, $sgn(G) \geq 3$.

Example 2.5 Consider the octahedron in Figure ??.

\[G : \]

![Octahedron Graph](image)

Figure 1: The octahedron graph G

Let $S_1 = \{v_1\}$ and $S_2 = \{v_1, v_2\}$. The vertex $v_3 \notin S_2$ so that

$$S_3 = \{v_1, v_2\} \cup \{v_3\} \cup \{u \in V(G) : u \in I_G[v_3, w] \exists w \in S_2\}.$$

Thus, $S_3 = \{v_1, v_2, v_3\} \cup I_G[v_3, v_1] \cup I_G[v_3, v_2]$. That is, $S_3 = \{v_1, v_2, v_3\} \cup \{v_3, u_1, u_2, u_3, v_2, v_1\} \cup \{v_3, v_2\}$. Hence, $S_3 = \{v_1, v_2, v_3, u_1, u_2, u_3\} = V(G)$. That is, $\langle v_1, v_2, \ldots, v_k \rangle$ is a geodetic sequence of G and $S = \{v_1, v_2, v_3\}$ is in $S^*(G)$. It follows that $sgn(G) \leq 3$. By Remark ??, $sgn(G) \geq 3$. Therefore, $sgn(G) = 3$.

We now consider some relationships between $sgn(G)$ and $cgn(G)$ and between $sgn(G)$ and $gn(G)$ of a connected graph G.

Theorem 2.6 Let G be a connected graph of order $n \geq 3$. If $cgn(G) = 2$, then $sgn(G) = 3$.

Proof. Suppose $cgn(G) = 2$ and let $S = \{u, v\}$ be a closed geodetic basis of G. Then $I_G[u, v] = V(G)$. Since $|V(G)| \geq 3$, $sgn(G) \geq 3$ by Remark ??.
there exists a vertex \(w \) different from \(u \) and \(v \) which lies in some \(u-v \) geodesic. Consider the sequence \(\langle v_1, v_2, v_3 \rangle \) where \(v_1 = u \), \(v_2 = w \), and \(v_3 = v \). Then

\[
S_3 = \{v_1, v_2, v_3\} \cup \{u' \in V(G) : u' \in I_G[v_3, w] \text{ for some } w \in S_2\}
\]

\[
= \{v_1, v_2, v_3\} \cup \{u' \in V(G) : u' \in I_G[v_3, v_1] \text{ or } u' \in I_G[v_3, v_2]\}
\]

\[
S_3 = V(G).
\]

Thus, \(\langle v_1, v_2, v_3 \rangle \) is a geodetic sequence and \(S = \{v_1, v_2, v_3\} \) is a sequential geodetic cover. It follows that \(sgn(G) \leq 3 \). However, by Remark ??, \(sgn(G) = 3 \).

The converse of Theorem ?? is not true. Consider, for example the cycle \(C_5 \). It can be verified that \(sgn(C_5) = 3 \) but \(cgn(C_5) = 3 \).

Theorem 2.7 [?] Let \(G \) be a connected graph. Then, \(gn(G) = 2 \) if and only if \(cgn(G) = 2 \) and \(gn(G) = 3 \) if and only if \(cgn(G) = 3 \).

The following are consequences of Theorem ??.

Corollary 2.8 Let \(G \) be a connected graph of order \(n \geq 3 \). If \(gn(G) = 2 \), then \(sgn(G) = 3 \).

Proof. If \(gn(G) = 2 \), then by Theorem ??, \(cgn(G) = 2 \). Thus by Theorem ??, \(sgn(G) = 3 \). \[\square\]

Corollary 2.9 For a path \(P_n \) of order \(n \), \(sgn(P_n) = 3 \) for all integer \(n \geq 3 \).

Proof. Let \(P_n \) be the path of order \(n \geq 3 \). Then, \(cgn(P_n) = 2 \). By Theorem ??, \(sgn(P_n) = 3 \). \[\square\]

Theorem 2.10 For a cycle \(C_n \) of order \(n \geq 3 \), \(sgn(C_n) = 3 \).

Proof. Let \(C_n = [x_1, x_2, x_3, \ldots, x_n, x_1] \) be a cycle of order \(n \geq 3 \). Then

\[
\begin{align*}
gn(C_n) = cgn(C_n) &= \begin{cases}
2, & \text{if } n \text{ is even} \\
3, & \text{if } n \text{ is odd}
\end{cases}
\end{align*}
\]

If \(n \) is even, then by Theorem ??, \(sgn(C_n) = 3 \). If \(n \) is odd, then consider the sequence \(\langle x_1, x_2, x_{\lceil \frac{n}{2} \rceil+1} \rangle \). That is, \(S_1 = \{x_1\} \) and \(S_2 = \{x_1, x_2\} \). Clearly, \(x_{\lceil \frac{n}{2} \rceil+1} \notin S_2 \) and

\[
S_3 = \{x_1, x_2, x_{\lceil \frac{n}{2} \rceil+1}\} \cup \{u \in V(C_n) : u \in I_{C_n}[x_{\lceil \frac{n}{2} \rceil+1}, w] \text{ } \exists \text{ } w \in S_2\}
\]

\[
= V(C_n) = V(G).
\]
Hence, \(\langle x_1, x_2, x_{\lceil \frac{n}{2} \rceil + 1} \rangle \) is a geodetic sequence and \(S = \{x_1, x_2, x_{\lceil \frac{n}{2} \rceil + 1}\} \) is a sequential geodetic cover. This, together with Remark 2 imply that \(sgn(C_n) = 3 \).

In [1], Albia showed that
\[
sgn(P_n) = \begin{cases}
2, & \text{if } n = 4 \\
3, & \text{if } n \geq 5
\end{cases}
\]
He also added that for \(n \geq 5 \), \(sgn(C_n) = 3 \). The following results give the sequential geodetic numbers of these graphs.

Theorem 2.11 For \(n \geq 4 \), \(sgn(P_n) = 3 \).

Proof. Let \(P_n = [x_1, x_2, x_3, \ldots, x_n] \) be a path of order \(n \geq 4 \). If \(n = 4 \), then \(P_4 = P_4 \). Hence, \(sgn(P_4) = sgn(P_4) = 3 \). Suppose \(n > 4 \). Then \(P_n \) is connected and by Remark 2, \(sgn(P_n) \geq 3 \). Let \(\langle x_1, x_3, x_2 \rangle \) be a sequence of vertices in \(P_n \). Then \(S_1 = \{x_1\} \) and \(S_2 = \{x_1, x_3\} \). Clearly, \(x_2 \notin S_2 \) and so \(\langle x_1, x_3, x_2 \rangle \) is a geodetic sequence. That is, set \(S = \{v_1, v_2, v_3\} \) with \(v_1 = x_1, v_2 = x_3, \) and \(v_3 = x_2 \), is a sequential geodetic basis of \(G \).

Theorem 2.12 For \(n \geq 5 \), \(sgn(C_n) = 3 \).

Proof. Let \(C_n = [x_1, x_2, x_3, \ldots, x_n, x_1] \) be the cycle of order \(n \geq 5 \). Then \(C_n \) is connected and by Remark 2, \(sgn(C_n) \geq 3 \). Consider the sequence \(\langle x_1, x_3, x_2 \rangle \). Then \(S_1 = \{x_1\} \) and \(S_2 = \{x_1, x_3\} \). Clearly, \(x_2 \notin S_2 \) and so if \(u \in V(C_n) \setminus S \), then \(u = x_i \) where \(4 \leq i \leq n \), and \(u \in I_{C_n}[w, x_2] \). This means that \(S_3 = V(C_n) \). That is \(S = \{v_1, v_2, v_3\} \) with \(v_1 = x_1, v_2 = x_3 \) and \(v_3 = x_2 \), is a sequential geodetic basis and \(sgn(C_n) = 3 \).

The next result shows that a sequential geodetic cover may not be a closed geodetic cover.

Theorem 2.13 Let \(G = K_{m,n} \), where \(m, n > 2 \), let \(U \) and \(W \) be the partite sets of \(V(G) \). Let \(S \subseteq V(G) \). Then \(S \in S^*(G) \) if and only if \(S \) is any of the following:

(i) \(S = U \);
(ii) \(S = W \);
(iii) \(S = U \cup \{w\} \) for some \(w \in W \);
(iv) \(S = W \cup \{u\} \) for some \(u \in U \);
(v) \(U \cup \{w, w'\} \) for some \(w, w' \in W \);
(vi) \(S = W \cup \{u, u'\} \) for some \(u, u' \in U \).
Proof. Suppose $S = \{v_1, v_2, \ldots, v_k\}$ is a sequential geodetic cover of $G = K_{m,n}$. Let $U' = S \cap U$ and $W' = S \cap W$. Since $m,n > 2$, we have $|U'| > 2$ or $|W'| > 2$. Suppose that $|U'| > 2$. Let $i = \min\{n \in \mathbb{Z}^+ : v_n \in U'\}$. Then $i < j$. If $i > 3$, then $v_1, v_2, v_3 \in W$ so that $v_i \in I_G[v_1,v_3]$ or $v_i \in I_G[v_2,v_3]$. In other words, $v_i \in S_3$, a contradiction. Thus, $i = 1,2,3$.

Case 1. Suppose $i = 1$. If $j > 3$, then $v_2, v_3 \in W$ so that $v_j \in I_G[v_2,v_3] \subset S_3$, a contradiction. Consequently, $j = 2$ or $j = 3$. If $j = 2$, then either $v_3 \in W$ and $v_n \in U$ for all $n = 1,2,3, \ldots, k$ or $v_n \in U$ for all $n = 1,2,3, \ldots, k$. This implies that $S \setminus \{v_3\} \subset U$ or $S \subset U$. If $j = 3$, then $v_2 \in W$ but $S \setminus \{v_2\} \subset U$.

Case 2. Suppose that $i = 2$. If $j > 3$, then $v_1, v_3 \in W$ so that $v_j \in I_G[v_1,v_3] \subset S_3$, a contradiction. This means that $j = 3$. Consequently, $S \setminus \{v_1\} \subset U$.

Case 3. Suppose that $i = 3$. If $j > 4$, then $v_1, v_2, v_4 \in W$ so that $v_j \in I_G[v_2,v_4]$, a contradiction. This means that $j = 4$. Consequently, $S \setminus \{v_1,v_2\} \subset U$.

Now, let $T \subset U$. Then $T_1 = T \cup W$ where $l = k,k-1$, or $k-2$. This implies that $T_1 = V(G)$ if and only if $T = U$. Therefore, either $S = U \cup \{w\}$ or $S = U \cup \{w,w'\}$ for some $w,w' \in W$. Similarly, if $|W| > 2$, then either $S = W$ or $S = W \cup \{u\}$ or $S = W \cup \{u,u'\}$ for some $u,u' \in U$.

Conversely, suppose that U, and W are the partite sets of $V(G) = K_{m,n}$ with $|U| = m$ and $|W| = n$ where $m,n > 2$. Let $S = U$. For every distinct vertices $u,u' \in U$ and for every $w \in W$, $w \in I_G[u,u']$. Moreover, for every distinct vertices $u,u' \in U$ a $u-u'$ geodesic in G is of the form $[u,w,u']$ where $w \in W$. Thus,

$$u'' \notin I_G[u,u'] \text{ for all } u'' \in U \setminus \{u,u'\}. \quad (*)$$

Hence, any ordering of the elements of U forms a geodetic sequence in G. Since $W \subset I_G[u,u'] \subset S_m$ and $U \subset S_m$, we have $V(G) \subset S_m$. Consequently, since $S_m \subset V(G)$, $V(G) = S_m$. Therefore, $S \in S^*(G)$.

Parallel arguments will show that $W \in S^*(G)$. Let $w \in W$ and consider the set $S = \{w\} \cup U = \{v_1, v_2, \ldots, v_{m+1}\}$ where $v_1 = w$ and $v_i = u_1 \in U$ for $i = 2,3,\ldots,m+1$. Clearly, $v_1 \neq v_2$ and by $(*)$, $v_i \notin S_{i-1}$ for all $i = 3,4,\ldots,m+1$. Note that $S_m = S_{m+1}$ and by the result above, $S_{m+1} = V(G)$. Therefore, $S \in S^*(G)$.

Similarly, if $S = \{u\} \cup W$ for some $u \in U$, then $S \in S^*(G)$.

Now, let $w,w' \in W$. Consider the set $S = \{w,w'\} \cup U = \{v_1, v_2, \ldots, v_{m+2}\}$ where $v_1 = w$, $v_2 = w'$ and $v_i = u_{i-2}$ for $i = 3,4,\ldots,m+2$. Clearly, $v_1 \neq v_2$ and by $(*)$, $v_i \notin S_{i-1}$ for all $i = 3,4,\ldots,m+2$. Since $w,w' \in I_G[v_i,v_j]$ for all $3 \leq i \neq j \leq m+2$, $S_{m} = S_{m+2}$. By the result above, $S_{m+2} = V(G)$.

The remaining case is proved similarly.

The next corollary is an immediate consequence of Theorem ??.

Corollary 2.14 For $m,n > 2$, $\operatorname{sgn}(K_{m,n}) = \min\{m,n\}$.

Proof. By Theorem ??,

$$\operatorname{sgn}(K_{m,n}) = \min\{m,n,m+1,n+1,m+2,n+2\} = \min\{m,n\}.$$
Cagaanan [4] showed that $gn(K_{m,n}) = \min\{m, n, 4\}$, for all $m, n > 2$. The next corollary is a consequence of this result and Corollary ??.

Corollary 2.15 Let $m, n > 2$. Then $sgn(K_{m,n}) = gn(K_{m,n})$ if and only if $\min\{m, n\} = 3$ or 4.

Aniversario [2] showed that $cgn(K_{m,n}) = gn(K_{m,n})$ if and only if $\min\{m, n\} \leq 4$ for all $m, n \geq 2$. This result together with Corollary ?? give the next corollary.

Corollary 2.16 $sgn(K_{m,n}) = cgn(K_{m,n})$ if and only if $m, n \geq 2$.

Theorem 2.17 Every closed geodetic basis of a connected graph G can be extended to a sequential geodetic cover.

Proof. Let G be a connected graph and $S = \{u_1, u_2, \ldots, u_k\} \in C^*(G)$ in a canonical form with $k = cgn(G)$. Then $u_i \notin I_G[u_m, u_n]$ for all integers i, m, n with $m < n < i$ and $1 \leq i \leq k$. Consider the following cases:

Case 1. Suppose $I_G[u_i, u_j] = \{u_i, u_j\}$ for some integers i, j where $1 \leq i, j \leq k$ and $i \neq j$. Then u_i and u_j are adjacent. Consider the sequence $\langle v_1, v_2, \ldots, v_k \rangle$ where $v_1 = u_i$, $v_2 = u_j$, and $\{v_3, v_4, \ldots, v_k\} = \{u_1, u_2, \ldots, u_k\} \setminus \{u_i, u_j\}$. Then $S_1 = \{u_i\}$ and $S_2 = \{u_i, u_j\}$. Clearly $v_3 \notin S_2$. By assumption, $u_r \notin I_G[S_{r-1}]$ for all r, $3 \leq r \leq k$. Since $S_r \subseteq I_G[S_r]$ for all r, it follows that $u_r \notin S'_{r-1}$ for all r, where $3 \leq r \leq k$. This means that $\langle v_1, v_2, \ldots, v_k \rangle$ is a geodetic sequence and $S'_k = \{v_1, v_2, \ldots, v_k\} = V(G)$. Therefore, $S'_k = \{u_1, u_2, \ldots, u_k\} = S$ is a sequential geodetic cover.

Case 2. Suppose $I_G[u_i, u_j] \neq \{u_i, u_j\}$ for all i, j where $1 \leq i \leq j \leq k$. In particular, $I_G[u_1, u_2] \neq \{u_1, u_2\}$. Thus, there exists a vertex w such that $w \in I_G[u_1, u_2]$.

Suppose $|V(G)| = 3$ and consider the sequence $\langle u_1, u_2, w \rangle$. Clearly, $w \notin S_2 = \{u_1, u_2\}$ and so $\langle u_1, u_2, w \rangle$ is a geodetic sequence in G. If $I_G[u_1, u_2] = V(G)$, then $S_3 = S_2 \cup \{w\} \cup \{u \in V(G) : u \in I_G[w, u_i]\}$ for some $u_i \in S_2 = V(G)$.

This implies that $S = \{u_1, u_2, w\}$ is a sequential geodetic basis of G. If $I_G[u_1, u_2] \neq V(G)$, then consider the sequence $\langle v_1, v_2, \ldots, v_k \rangle$ where $v_1 = u_1$, $v_2 = u_3, v_3 = u_2$ and $v_r = u_r$ for $r = 4, 5, \ldots, k$. Thus, $v_r \notin S'_{r-1}$ for all r, $4 \leq r \leq k$. Also, $S'_k = S \cup \{w\} = V(G)$. Therefore, $S'_k = \{v_1, v_2, \ldots, v_k\} = \{u_1, u_2, \ldots, u_k\} = S$ is a sequential geodetic cover of G.

Theorem 2.18 Let G be a connected graph of order $n \geq 4$. Then $sgn(G) = n$ if and only if $G = K_n$.
Proof. Let \(\langle v_1, v_2, \ldots, v_k \rangle \) be a sequence of vertices in \(K_n \) and \(i, j \) be integers such that \(1 \leq i, j \leq k \). Then \(d(v_i, v_j) = 1 \) for all \(i, j \) with \(i \neq j \). Consequently, \(S_i = \{v_1, v_2, \ldots, v_i\} \) for all \(i \). This implies that \(v_i \notin S'_{i-1} \) for all \(i \) and \(\langle v_1, v_2, \ldots, v_k \rangle \) is a geodetic sequence. Furthermore, \(S_k = V(K_n) \) if and only if \(k = n \). Hence, \(S_i = \{v_1, v_2, \ldots, v_n\} \) is a sequential geodetic cover of \(K_n \) and is the minimum such cover. Therefore, \(sgn(K_n) = n \).

Suppose \(sgn(G) = n \) and suppose further that \(G \neq K_n \). Then there exist \(u \) and \(v \) in \(V(G) \) such that \(d_G(u, v) = 2 \). Let \(v_2 = u \) and \(v_3 = v \). If \(I_G[u, v] = V(G) \), then let \(v_1 = w \), where \(w \in I_G(u, v) \). Then \(\langle v_1, v_2, v_3 \rangle \) is a geodetic sequence and \(S = \{v_1, v_2, v_3\} \) is a sequential geodetic cover. Hence, \(sgn(G) = 3 < n \). If \(I_G[u, v] \neq V(G) \), pick \(v_1 = v \notin V(G) \), pick \(v_1 = w \notin I_G[u, v] \). Then \(\langle v_1, v_2, v_3 \rangle \) is a geodetic sequence. If \(S_3 = V(G) \), then \(S = \{v_1, v_2, v_3\} \) is a sequential geodetic cover. This implies that \(sgn(G) = 3 < n \). If \(S_3 \notin V(G) \), then continue until \(S_k = V(G) \). Since \(\{v_1, v_2, v_3\} \subset S_3 \), it follows that \(S = \{v_1, v_2, \ldots, v_k\} \subset S_k \). That is, \(|S| = k < n \). Hence, \(sgn(G) \leq k < n \) and the conclusion follows.

\[\text{Theorem 2.19} \; \text{Let} \; G \; \text{be a connected graph of order} \; n > 4. \text{Then} \; sgn(G) = n - 1 \; \text{if and only if} \; G = K_1 + \cup m_j K_j, \; \text{where} \; 2 \leq \Sigma m_j = n - 1. \]

\[\text{Proof.} \; \text{Suppose} \; G = K_1 + \cup m_j K_j, \; \text{where} \; 2 \leq \Sigma m_j \; \text{and} \; |V(G)| > 4. \; \text{Then} \; G - w \; \text{has at least two components. Note that each component of} \; G \; \text{is complete. Let} \; u, v \in V(G) \setminus \{w\}. \; \text{If} \; u \; \text{and} \; v \; \text{do not belong to the same component, then} \; d_G(u, v) = 2 \; \text{and a} \; u-v \; \text{geodesic is of the form} \; \{u, w, v\}. \; \text{If} \; u \; \text{and} \; v \; \text{are in the same component, then} \; I_G[u, v] = \{u, v\}. \; \text{Claim first that} \; S = (V(G) \setminus \{w\}) \; \text{is a sequential geodetic cover of} \; G. \]

\[\text{Let} \; \langle v_1, v_2, \ldots, v_{n-1} \rangle \; \text{be a sequence of vertices in} \; G - w. \; \text{Then} \; S_1 = \{v_1\}, \; S_2 = \{v_1, v_2\} \; \text{and either} \; S_i = \{v_1, v_2, \ldots, v_i\} \; \text{or} \; S_i = \{v_1, v_2, \ldots, v_i\} \cup \{w\} \; \text{for all} \; i, \; \text{where} \; 3 \leq i \leq n - 1. \; \text{Clearly,} \; v_i \notin S'_{i-1} \; \text{for all} \; i. \; \text{If} \; d_G(v_1, v_2) = 2, \; \text{then by assumption there exists a vertex} \; v_i \; \text{for some} \; i \; \text{such that either} \; w \in I_G[v_1, v_i] \; \text{or} \; w \in I_G[v_i, v_2]. \; \text{Therefore, any ordering of the elements in the sequence forms a geodesic sequence} \; G - w. \; \text{Moreover,} \; S_{n-1} = \{v_1, v_2, \ldots, v_{n-1}\} \cup \{w\} = V(G). \; \text{Therefore,} \; S = \{v_1, v_2, \ldots, v_{n-1}\} \; \text{is a sequential geodetic cover. It remains to show that} \; S \; \text{is of minimum cardinality.} \]

\[\text{Let} \; T \subseteq S \; \text{and} \; |T| = k < n - 1. \; \text{Then using the same argument as above, either} \; S'_k = T \; \text{or} \; S'_k = T \cup \{w\}. \; \text{Consequently, if} \; |T| \leq n - 2, \; \text{then} \; |S'_k| \leq n - 1 \; \text{and so} \; S_k \neq V(G). \; \text{Therefore,} \; S \; \text{is a sequential geodetic basis.} \]

\[\text{Conversely, suppose that} \; sgn(G) = n - 1. \; \text{Claim first that} \; d_G(u, v) \leq 2 \; \text{for all} \; u, v \in V(G). \; \text{On the contrary, suppose that there exist} \; u, v \in V(G) \; \text{with} \; d_G(u, v) > 3. \; \text{If} \; I_G[u, v] = V(G), \; \text{then pick} \; v_1 = u, \; v_2 = w, \; \text{and} \; v_3 = v, \; \text{where} \; w \in I_G(u, v) \; \text{and} \; d_G(u, v) = 1. \; \text{Then} \; \langle v_1, v_2, v_3 \rangle \; \text{is a geodesic sequence and} \; S = \{v_1, v_2, v_3\} \; \text{is a sequential geodetic cover.} \; \text{By assumption,} \; |V(G)| > 4. \; \text{Hence,} \; sgn(G) = 3 < |V(G)| - 1. \; \text{This is a contradiction. If} \; I_G[u, v] \neq V(G), \]

then let $v_1 = u$, $v_2 = w'$, and $v_3 = v$ where $w' \notin I_G[u,v]$. Clearly, $\langle v_1, v_2, v_3 \rangle$ is a geodetic sequence. Since $d_G(u,v) = 3$, it follows that $|I_G[u,v]| \geq 4$. Hence, $|S_3| \geq 5$. This implies that if $S = \{v_1, v_2, \ldots, v_k\}$ is a sequential geodetic cover of G, then $|S_k| \geq k + 2$, that is, $k \leq n - 2$. It follows that $sgn(G) \leq k \leq n - 2$, a contradiction. Therefore, $d_G(u,v) = 1$ or $d_G(u,v) = 2$ for distinct vertices u and v of G.

Since $G \neq K_n$, there exist $u, v \in V(G)$ such that $d_G(u,v) = 2$. Let $w \in I_G(u,v)$.

Claim 1. If $I_G[u,v] = \{u, w, v\}$.

Assume that there exists $w' \neq w$ such that $w' \in I_G[u,v]$. If $I_G[u,v] = V(G)$, then pick $v_1 = u$, $v_2 = w'$, and $v_3 = v$. Then $v_3 \notin S_2 = \{u, w'\}$ and $\langle v_1, v_2, v_3 \rangle$ is a geodetic sequence. Hence, $S = \{v_1, v_2, v_3\}$ is a sequential geodetic cover. Since $n \geq 5$, $|S| \leq n - 2$. Thus, $sgn(G) \leq n - 2$ which is a contradiction. If $I_G[u,v] \neq V(G)$, then pick $v_1 = u$, $v_2 = w'$ and $v_3 = v$ where $w' \notin I_G[u,v]$. Since $|I_G[u,v]| \geq 4$, it follows that $|S_3| \geq 5$. Consequently, if $S = \{v_1, v_2, \ldots, v_k\}$ is a sequential geodetic cover, then $|S_k| \geq k + 2$. That is, $k \leq n - 2$. This is a contradiction. Thus, $[u, w, v]$ is the only $u - v$ geodesic in G.

Claim 2. $d_G(w, x) = 1$ for all $x \in V(G) \setminus \{w\}$.

Suppose on the contrary, that there exists $x \in V(G) \setminus \{w\}$ such that $d_G(w, x) = 2$. Clearly, $x \neq u, v$. Let $z \in I_G(w, x)$. Now, $d_G(u, x) \leq 2$ and $d_G(x, v) \leq 2$. Consequently, either $z = u$ or $z = v$. Suppose $z = v$.

Then, $d_G(u, x) = 1$ or $d_G(u, x) = 2$.

Case 1. If $d_G(u, x) = 1$, then $w, x \in I_G(u, v)$. If $I_G[u,v] = V(G)$, then pick $v_1 = u$, $v_2 = x$, $v_3 = v$ and consider the sequence $\langle v_1, v_2, v_3 \rangle$. Then $S_1 = \{u\}$ and $S_2 = \{u, x\}$. Clearly, $v = v_3 \notin S_2$. Thus, $\langle v_1, v_2, v_3 \rangle$ is a geodetic sequence and $S_3 = V(G)$. Hence, $S = \{v_1, v_2, v_3\}$ is a sequential geodetic cover. Moreover, $sgn(G) = 3 \leq n - 2$, a contradiction. If $I_G[u,v] \neq V(G)$, then pick $v_1 = u$, $v_2 = w'$ and $v_3 = v$ where $w' \notin I_G[u,v]$. Clearly, the sequence $\langle v_1, v_2, v_3 \rangle$ is a geodesic sequence. Since $|I_G[v_1, v_3]| \geq 4$, it follows that $|S_3| \geq 5$. This means that if $S = \{v_1, v_2, \ldots, v_k\} \in S^*(G)$, then $sgn(G) \leq k \leq n - 2$, a contradiction.

Case 2. If $d_G(u, x) = 2$, then let $v_1 = x$, $v_2 = v$ and $v_3 = u$. Using the same argument as above, this case leads to a contradiction also.

Similarly, it is impossible to have $z = u$. Therefore the claim holds.

Claim 3. There does not exist $w' \in V(G)$, $w' \neq w$ such that $d_G(w', x) = 1$ for all $x \in V(G) \setminus \{w\}$.

Suppose $w' \in V(G)$, $w' \neq w$ and $d_G(w', x) = 1$ for all $x \in V(G) \setminus \{w'\}$. By definition of u and v above, $w' \neq u, v$. Since $d_G(u,w') = d_G(v,w') = 1$, $w' \in I_G(u,v)$. This contradicts Claim 1 above. Therefore, the claim holds.

The above claims imply that $G = \langle \{w\} \rangle + H$, where H is a subgraph of G.

Claim 4. H is not connected.
Consider the vertices u and v above. Clearly, $u, v \in V(G)$, by Claims 1 and 2, $[u, w, v]$ is the only u-v geodesic in G. Therefore, there is no path joining u and v in H. This means that H is not connected.

Claim 5. Every component of H is complete.

Let C be a component of H. If $|V(C)| = 1$, then we are done. Suppose that $|V(C)| \geq 2$. Let $x, y \in V(C)$. If $d_G(x, y) = 2$, then by Claims 3 and 4, $[x, w, y]$ is the only x-y geodesic in G. Hence, x and y cannot be in one component of H, a contradiction. Therefore, $d_G(x, y) = 1$. Since x and y are arbitrary, C is complete. Thus, $H = \bigcup m_j K_j$. This completes the proof of the theorem.

Example 2.20 The graph $G = K_1 + (2K_2 \cup K_3)$ where $K_1 = \{x\}$ shown in Figure ?? has $\text{sgn}(G) = 7$. The sequential geodetic basis of G is the set $V(G) \setminus \{x\}$.

![Figure 2: The graph $K_1 + (2K_2 \cup K_3)$](image)

Acknowledgment The authors would like to thank the referees for reading this paper and giving valuable comments and suggestions for improvements.

References

On sequential geodetic numbers of some connected graphs

Received: March 27, 2014