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Abstract

The two dimensional coupled Burgers’ equations constitute an appropriate
model for developing computational algorithms, for solving the incompress-
ible Navier-Stokes equations. Moreover, they are generally used as transport
equations because they model a number of fluid flow phenomena, for example,
turbulent flow, shock wave formation and boundary layer formation. In this
paper, we develop a hybrid Crank-Nicolson and Du Fort and Frankel (CN-
DF) scheme. The hybrid CN-DF is developed by introducing the Du Fort and
Frankel (DF) properties into the Crank-Nicolson scheme (CN). This is a three-
level scheme and is also unconditionally stable. Numerical solutions from the
hybrid scheme are obtained by the use of MATLAB software. By use of L1

error, it is determined that the hybrid scheme is fifth order accurate in space
and produces better results in comparison to the pure Crank-Nicolson and the
pure Du Fort and Frankel schemes.

Keywords: 2-D Burgers’ equation, Hybrid CN-DF method, L1 error, fifth
order accurate in space
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1 Introduction

The Burgers’ equation is an important non-linear parabolic partial differen-
tial equation (PDE) widely used to model several physical flow phenomena in
fluid dynamics teaching and in engineering such as turbulence, boundary layer
behaviour, shock wave formation, and mass transport, Pandey et al., [10]. In
general, this equation is suited to modelling fluid flows because it incorporates
directly the interaction between the non-linear convection processes and the
diffusive viscous processes, Fletcher[5]. Consequently, it is one of the princi-
ple model equations used to test the accuracy of new numerical methods or
computational algorithms, Kanti and Lajja, [6]. The 2-D coupled non-linear
Burgers’ equations are a special form of incompressible Navier-Stokes equa-
tions without having the pressure term and the continuity equation, Vineet et
al.,[14].
The Du Fort and Frankel scheme (DF) is a finite difference scheme that was
first presented in 1953 as a numerical method for solving the heat equation
with periodic boundary conditions, Du Fort and Frankel, [4]. This is a three
level explicit scheme but which is unconditionally stable, however, it faces con-
sistency problems for large values of ∆t, Mitchell and Griffiths, [9]. The scheme
has been used to solve both the one and two dimensional Burgers’ equation,
Pandey et al., and Samir, [11, 12].
On the other hand, the Crank-Nicolson (CN) scheme is an implicit finite dif-
ference scheme that was developed by John Crank and Phyllis Nicolson in
the mid 20th Century, Crank and Nicolson, [3]. It is a second order accurate
method in both space and time and unconditionally stable and was used for
solving the heat equation and similar partial differential equations, [13]. Con-
sequently, it is a two level scheme.
The term hybrid means blended or “marrying” two or more numerical meth-
ods, Koross et al., [7]. The hybrid Crank-Nicolson and Du Fort and Frankel
(CN-DF) scheme was first developed in 2009 from operator splitting for solv-
ing the one dimensional Burgers’ equation, Koross et al., [7]. It was found
that the DF method increases the efficacy of the CN method by increasing
the number of grid points involved. Consequently, the CN-DF scheme is three
level and unconditionally stable and produces more accurate numerical results
than those of the parent pure schemes.
In this paper, the hybrid CN-DF scheme is developed by introducing or in-
corporating important properties from the DF scheme into the CN scheme to
improve its efficacy. The terms that are affected in the Burgers’ equation are
the unsteady state and diffusion terms. Numerical solutions for the CN-DF
scheme are compared with those of the exact solution and the pure CN scheme
and the L1 error is used to determine the order of convergence and consistency
of the CN-DF scheme. The Reynolds number is kept constant at 4000 and the
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time stepping is made very small at ∆t = 0.001 to maintain consistency and
accuracy.

2 Mathematical Formulation

The 2-D Burgers’ model is given by;

ut + uux + vuy =
1

Re
(uxx + uyy) (2.1)

vt + uvx + vvy =
1

Re
(vxx + vyy) (2.2)

subject to the initial conditions

u(x, y, 0) = ϕ1(x, y), v(x, y, 0) = ϕ2(x, y)
}

(x, y) ∈ Ω (2.3)

and Dirichlet boundary conditions

u(x, y, t) = ζ(x, y, t), v(x, y, t) = ξ(x, y, t)
}

(x, y) ∈ ∂Ω, t > 0 (2.4)

where Ω = {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b} is the computational domain which
in this study is taken to be a square domain, and ∂Ω is its boundary; u(x, y, t)
and v(x, y, t) are the velocity components to be determined; ϕ1, ϕ2, ζ, and ξ
are known functions; ut is the unsteady term; uux is the non-linear convection
term; Re is the Reynolds number, and 1

Re
(uxx + uyy) is the diffusion term.

The discretization of the 2-D Burgers equations (2.1) and (2.2) is done by the
CN-DF scheme. We begin by providing an insight into the discretization of the
pure DF and pure CN schemes independently before embarking on the hybrid
scheme.

2.1 The Pure Du Fort and Frankel (DF) Scheme

For the discretization of equations (2.1) and (2.2) by the DF scheme, we have;

1

k
µδtu(x, y, tn) + u(x, y, t)

1

h
µδx(u(x, y, tn)) + v(x, y, t)

1

h
µδy(u(x, y, tn))

=
1

h2Re
[δx

2u(x, y, tn + δy
2u(x, y, tn)] (2.5)

1

k
µδtv(x, y, tn) + u(x, y, t)

1

h
µδx(v(x, y, tn)) + v(x, y, t)

1

h
µδy(v(x, y, tn))

=
1

h2Re
[δx

2v(x, y, tn + δy
2v(x, y, tn)] (2.6)
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The resultant uni,j and vni,j terms on the right hand side (RHS) are replaced by

their average terms given by
un+1
i,j +un−1

i,j

2
and

vn+1
i,j +vn−1

i,j

2
respectively from which

the following recurrence equations are obtained

un+1
i,j − un−1

i,j

2k
+ uni,j(

uni+1,j − uni−1,j

2h
) + vni,j(

uni,j+1 − uni,j−1

2h
)

=
1

Re
{(
uni+1,j − un+1

i,j − un−1
i,j + uni−1,j

h2
) + (

uni,j+1 − un+1
i,j − un−1

i,j + uni,j−1

h2
)}

(2.7)

vn+1
i,j − vn−1

i,j

2k
+ uni,j(

vni+1,j − vni−1,j

2h
) + vni,j(

vni,j+1 − vni,j−1

2h
)

=
1

Re
{(
vni+1,j − vn+1

i,j − vn−1
i,j + vni−1,j

h2
) + (

vni,j+1 − vn+1
i,j − vn−1

i,j + vni,j−1

h2
)}

(2.8)

2.2 The Pure Crank-Nicolson (CN) Scheme

For the discretization of equations (2.1) and (2.2) by the CN scheme, we have;

1

k
∆tu(x, y, tn) + u(x, y, t)

1

2h
µδx[u(x, y, tn+1) + u(x, y, tn)]

+v(x, y, t)
1

2h
µδy[u(x, y, tn+1)+u(x, y, tn)] =

1

2h2Re
[δx

2(u(x, y, tn+1+u(x, y, tn))

+ δy
2(u(x, y, tn+1 + u(x, y, tn))] (2.9)

1

k
∆tv(x, y, tn) + u(x, y, t)

1

2h
µδx[v(x, y, tn+1) + v(x, y, tn)]

+v(x, y, t)
1

2h
µδy[v(x, y, tn+1)+v(x, y, tn)] =

1

2h2Re
[δx

2(v(x, y, tn+1)+v(x, y, tn)

+ δy
2(v(x, y, tn+1) + v(x, y, tn))] (2.10)

from which the following recurrence equations are obtained

un+1
i,j − uni,j

k
+

1

2
[un+1

i,j (
un+1
i+1,j − un+1

i−1,j

2h
)+uni,j(

uni+1,j − uni−1,j

2h
)]+

1

2
[vn+1

i,j (
un+1
i,j+1 − un+1

i,j−1

2h
)

+vni,j(
uni,j+1 − uni,j−1

2h
)] =

1

Re
[
1

2
{(
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

h2
)+(

uni+1,j − 2uni,j + uni−1,j

h2
)}

+
1

2
{(
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

h2
) + (

uni,j+1 − 2uni,j + uni,j−1

h2
)}] (2.11)
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vn+1
i,j − vni,j

k
+

1

2
[un+1

i,j (
vn+1
i+1,j − vn+1

i−1,j

2h
)+uni,j(

vni+1,j − vni−1,j

2h
)]+

1

2
[vn+1

i,j (
vn+1
i,j+1 − vn+1

i,j−1

2h
)

+vni,j(
vni,j+1 − vni,j−1

2h
)] =

1

Re
[
1

2
{(
vn+1
i+1,j − 2vn+1

i,j + vn+1
i−1,j

h2
)+(

vni+1,j − 2vni,j + vni−1,j

h2
)}

+
1

2
{(
vn+1
i,j+1 − 2vn+1

i,j + vn+1
i,j−1

h2
) + (

vni,j+1 − 2vni,j + vni,j−1

h2
)}] (2.12)

where h = ∆x = ∆y, k = ∆t, and h2 = ∆x2 = ∆y2.

2.3 The Hybrid Crank-Nicolson-Du Fort and Frankel
(CN-DF) Scheme

To form the hybrid CN-DF scheme, we first replace the time discretization in
the CN scheme by that of the DF scheme followed by a replacement of the
terms uni,j and vni,j on the RHS of the CN scheme by their averages. This results
in a three level implicit scheme given by;

un+1
i,j − un−1

i,j

2k
+

1

2
[un+1

i,j (
un+1
i+1,j − un+1

i−1,j

2h
)+uni,j(

uni+1,j − uni−1,j

2h
)]+

1

2
[vn+1

i,j (
un+1
i,j+1 − un+1

i,j−1

2h
)

+vni,j(
uni,j+1 − uni,j−1

2h
)] =

1

Re
[
1

2
{(
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

h2
)+(

uni+1,j − un+1
i,j − un−1

i,j + uni−1,j

h2
)}

+
1

2
{(
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

h2
) + (

uni,j+1 − un+1
i,j − un−1

i,j + uni,j−1

h2
)}] (2.13)

vn+1
i,j − vn−1

i,j

2k
+

1

2
[un+1

i,j (
vn+1
i+1,j − vn+1

i−1,j

2h
)+uni,j(

vni+1,j − vni−1,j

2h
)]+

1

2
[vn+1

i,j (
vn+1
i,j+1 − vn+1

i,j−1

2h
)

+vni,j(
vni,j+1 − vni,j−1

2h
)] =

1

Re
[
1

2
{(
vn+1
i+1,j − 2vn+1

i,j + vn+1
i−1,j

h2
)+(

vni+1,j − vn+1
i,j − vn−1

i,j + vni−1,j

h2
)}

+
1

2
{(
vn+1
i,j+1 − 2vn+1

i,j + vn+1
i,j−1

h2
) + (

vni,j+1 − vn+1
i,j − vn−1

i,j + vni,j−1

h2
)}] (2.14)

The resultant non-linear algebraic systems of equations are linearized by New-
ton’s method during the numerical implementation. The terms from the DF
scheme are the ones which contribute to the increased grid points (three level)
and therefore increased efficacy.

3 Numerical results by the hybrid CN-DF scheme

We employ the exact solutions and their initial and boundary conditions that
were developed by Kweyu et al., [8] to derive the numerical solutions using the
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CN-DF scheme. The exact solutions are given by;

u(x, y, t) =
−2y − 2πe

−2π2t
Re ((cos(πx)− sin(πx)) sin(πy))

Re(100 + xy + e
−2π2t

Re ((cos(πx)− sin(πx)) sin(πy))
(3.1)

v(x, y, t) =
−2x− 2πe

−2π2t
Re ((cos(πx) + sin(πx)) cos(πy))

Re(100 + xy + e
−2π2t

Re ((cos(πx)− sin(πx)) sin(πy))
(3.2)

From which the initial and boundary conditions are derived.
The numerical solutions for u and v using the CN-DF scheme at Re = 4000
and 32×32 grid points are given graphically by;

(a) (b)

Figure 1: Numerical solutions for u and v with dt = 0.001 and t = 1.0 seconds

The comparisons between the numerical solutions and the exact solutions
are presented for u and v at random points of the solution matrices is given in
the following table.

Table 1: Solutions for u at dt = 0.001, t = 1.0, and Re = 4000
(x,y) Exact Solution u Hybrid CN-DF u Pure C-N u

(0.1,0.1) -3.586880e-06 -3.586899e-06 -3.586912e-06
(0.5,0.1) 4.314708e-06 4.314738e-06 4.314758e-06
(0.3,0.3) 1.282006e-06 1.282019e-06 1.282031e-06
(0.7,0.3) 1.610071e-05 1.610081e-05 1.610089e-05
(0.1,0.5) -1.237415e-05 -1.237419e-05 -1.237423e-05
(0.5,0.5) 1.296916e-05 1.296924e-05 1.296931e-05
(0.5,0.9) 3.276510e-07 3.276817e-07 3.277015e-07
(0.9,0.9) 1.576664e-06 1.576699e-06 1.576724e-06
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Table 2: Solutions for v at dt = 0.001, t = 1.0, and Re = 4000
(x,y) Exact Solution v Hybrid CN-DF v Pure C-N v

(0.1,0.1) -1.915564e-05 -1.915574e-05 -1.915582e-05
(0.5,0.1) -1.730376e-05 -1.730384e-05 -1.730391e-05
(0.3,0.3) -1.416108e-05 -1.416114e-05 -1.416120e-05
(0.7,0.3) -5.511169e-06 -5.511183e-06 -5.511191e-06
(0.1,0.5) -4.935646e-05 -4.935647e-05 -4.935647e-05
(0.5,0.5) -2.469256e-06 -2.469255e-06 -2.469255e-06
(0.5,0.9) 1.227266e-05 1.227274e-05 1.227280e-05
(0.9,0.9) -1.395881e-05 -1.395886e-05 -1.395890e-05

The above table shows that the CN-DF scheme provides accurate results
closer to the exact solution as compared to those of the C-N scheme.
We now turn our attention to the L1 error analysis. It is used to determine
the order of convergence or accuracy besides checking whether the scheme is
consistent.

Table 3: Order of Convergence for solution u and v at Re = 4000, t = 1 sec,
dt = 0.001
No. of Cells L1 error in u Order No. of Cells L1 error in v Order
(4,4) 1.3464e-009 - (4,4) 7.5869e-010 -
(8,8) 4.2381e-010 1.6676 (8,8) 3.2784e-010 1.2105
(16,16) 9.1106e-011 2.2178 (16,16) 7.8436e-010 2.0634
(32,32) 4.4870e-012 4.3437 (32,32) 3.5022e-012 4.4852
(64,64) 1.3904e-013 5.0122 (64,64) 1.0782e-013 5.0216

4 Conclusion

The hybrid CN-DF scheme is implicit, three level in time, and unconditionally
stable. From tables 1 and 2, it is determined that the CN-DF scheme is more
accurate than the CN scheme with regards to the exact solution. Consequently,
it is fifth order convergent in space implying a higher accuracy than the second
order convergent CN scheme. The decrease in the L1 error as the mesh is
refined also verifies the consistency of the scheme. Therefore, the scheme is a
great development in numerical analysis and can be applied to other partial
differential equations where high accuracy is required.
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