On p-(α, β)-Normal Operators

D. Senthilkumar

Post Graduate and Research Department of Mathematics
Government Arts College (Autonomous)
Coimbatore - 641 018,Tamil Nadu, India

R. Santhi

Department of Mathematics
Sri Ramakrishna Engineering College
Vattamalaipalayam, Coimbatore - 641 022
Tamil Nadu, India

Copyright © 2014 D. Senthilkumar and R. Santhi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

An operator $T \in B(H)$ is said to be p-(α, β) normal operators for $0 < p \leq 1$ if $\alpha^2(T^*T)^p \leq (TT^*)^p \leq \beta^2(T^*T)^p$, $0 \leq \alpha \leq 1 \leq \beta$. In this paper, we prove that if T is p-(α, β) - normal operator then T^n is $\frac{p}{n}$-(α, β) - normal operator for all positive integer n. Moreover, we prove that if $T = U|T|$ is $p - (\alpha, \beta)$ - normal operator for $0 < p < 1$, the Aluthge transform $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ is $(p + \frac{1}{2}) - (\alpha, \beta)$ - normal operator. In this paper, some of the properties and structure of $p - (\alpha, \beta)$ normal operators are discussed.

Mathematics Subject Classification: Primary 47B33; Secondary 47B37

Keywords: p- (α, β) - normal operators, (α, β) - normal operators, Aluthge Transformation

1. Introduction and Preliminaries

Let H be a separable complex Hilbert space and $B(H)$ denote the algebra of bounded linear operators on an infinite dimensional separable Hilbert space

\[1\] Corresponding author
An operator T is said to be normal if $TT^* = T^*T$ and hyponormal if $TT^* \leq T^*T$. An operator T is said to be dominant if $\text{ran } (T - \lambda I) \subseteq \text{ran } (T - \lambda I)^*$ for all $\lambda \in \mathbb{C}$ or equivalently there exists a real number M_{λ} for each $\lambda \in \mathbb{C}$ such that $\| (T - \lambda I)x \| \leq M_{\lambda} \| (T - \lambda I)x \|$ for each $x \in H$. If there exists a constant M such that $M_{\lambda} \leq M$ for all $\lambda \in \mathbb{C}$, then T is called M-hyponormal and if $M = 1$, T is hyponormal. The class of Hyponormal operators has been studied by many authors. In recent years this class has been generalized, in some sense, to the larger sets of so-called p-hyponormal, log hyponormal, Posinormal, etc [7], [8], [5], [1] and [2]. An operator $T \in B(H)$ is said to be p-hyponormal for $0 < p < 1$ if $(TT^*)^p \leq (T^*T)^p$, p-posinormal if $(TT^*)^p \leq c^2(T^*T)^p$, (α, β)-normal operators if $\alpha^2T^*T \leq TT^* \leq \beta^2T^*T$, $0 \leq \alpha \leq 1 \leq \beta$ [6].

The example of an M-hyponormal operator given by Wadhwa [12], the weighted shift operator defined by $T e_1 = e_2$, $T e_2 = 2e_3$ and $T e_i = e_{i+1}$ for $i \geq 0$, is not an $p - (\alpha, \beta)$ normal, which is neither normal nor hyponormal. So it is clear that the class of $p - (\alpha, \beta)$ normal lies between hyponormal and M-hyponormal operators. Now the inclusion relation becomes

\[
\text{Normal} \subseteq \text{Hyponormal} \subseteq (\alpha, \beta) \text{ normal} \subseteq p - (\alpha, \beta) \text{ normal} \subseteq M \text{- hyponormal} \subseteq \text{Dominant}
\]

S.S Dragomir and M.S. Moslehian [3] and [6] has given various inequalities between the operator norm and numerical radius of (α, β)-normal operators. Weyl type theorems and composition operators of (α, β) have been studied by D. Senthil Kumar and Sherin Joy S.M [10, 11]. As a generalisation of (α, β)-normal operators, we introduce $p/(\alpha, \beta)$-normal operators. When $p = 1$, this coincide with (α, β)-normal operators.

2. on $p - (\alpha, \beta)$ normal operators

Proposition 2.1. If $T \in B(H)$, then the following statements are equivalent:

(i) $T \in p - (\alpha, \beta)$ normal operators.

(ii) $\text{Range } |T|^p = \text{Range } |T^*|^p$, $\text{ker } T^p = \text{ker } T^*^p$.

(iii) There exist $S_1, S_2 \in B(H)$ such that $|T^*|^p = |T|^p S_1$, $|T|^p = |T^*|^p S_2$.

(iv) There exist positive operators P_1, P_2 such that $|T^*|^2p = |T|^p P_1 |T|^p$, $|T|^2p = |T|^*^p P_2 |T|^*^p$.

Theorem 2.2. Let T be an $p - (\alpha, \beta)$ normal operator then

(i) λT is $p - (\alpha, \beta)$ normal operator

(ii) the translate $T - \lambda$ need not be $p - (\alpha, \beta)$ normal operator.
Therefore λT is $p-(\alpha, \beta)$ normal operator.

(ii) The operator $T = U^* - 2$, where U is the unilateral shift since $2 \notin \sigma(U^*)$ [5], T is $p-(\alpha, \beta)$ normal operator but U^* is not $p-(\alpha, \beta)$ normal, U is $p-(\alpha, \beta)$ normal.

Theorem 2.3. Let $T = U|T| \in B(H)$ be the polar decomposition of T. Then $T \in p-(\alpha, \beta)$ normal operator iff there exist a positive number α, β such that $\alpha \|T^p x\| \|T^p y\| \leq \| (U|T|^2 p x, y) \| \leq \beta \|T^p x\| \|T^p y\|$

Proof. By assumption T is $p-(\alpha, \beta)$ normal operator

$$|(U|T|^2 p x, y)| = \| (U|T|^2 p x, U^* y) \| = \|T^p x\| \|T^p U^* y\|$$

Similarly

$$|(U|T|^2 p x, y)| = \| (|T|^2 p x, U^* y) \| = \|T^p x\| \|T^p U^* y\|$$

Therefore

$$\alpha \|T^p x\| \|T^p y\| \leq |(U|T|^2 p x, y)| \leq \beta \|T^p x\| \|T^p y\|.

Theorem 2.4 (Mc Carthy [2]). Let $A \geq 0$. Then

(i) $(Ax, x)^r \leq \|x\|^{2(r-1)}(A^r x, x)$ if $r \geq 1$

(ii) $(Ax, x)^r \geq \|x\|^{2(r-1)}(A^r x, x)$ if $0 \leq r \leq 1$.

Theorem 2.5. If T is $p-(\alpha, \beta)$ normal operator then T is M-paranormal.

Proof. Let $T = U|T|$ be the polar decomposition of T. Since T is $p-(\alpha, \beta)$ normal operator,

$$\alpha^2 |T|^{2p} \leq U|T|^{2p} U^* \leq \beta^2 |T|^{2p}$$

$$\Rightarrow U|T|^{2p} U^* \leq \beta^2 |T|^{2p}$$

$$\Rightarrow |T|^{2p} \leq \beta^2 U^* |T|^{2p} U.$$
\[\beta^2 \left(\| T \|^{2p} \left(\frac{T_x}{\| T_x \|},\frac{T_x}{\| T_x \|} \right) \right) \]

\[0 \leq p \leq 1 \]

\[\geq \beta^2 \left(\| T \|^{2p} \| T_x \|^{1/p} \| T_x \|^{2} \right) \]

\[\geq \beta^2 (U^* |T|^{2p} |T|x, |T|x)^{1/p} \| T_x \|^{2} \]

\[\geq (|T|^{2p+2} x, x)^{1/p} \| T_x \|^{2} \]

\[\| T_x \|^4 \| T_x \|^4 / p \]

\[\geq \| T_x \|^{4} \]

\[\| T_x \|^4 \leq \beta^2 \| T^2 x \|^2 \]

Therefore, \(\| T_x \|^2 \leq \beta \| T^2 x \| \) T is M-paranormal.

Corollary 2.6. If \(T \) is \(p - (\alpha, \beta) \) normal operator and \(V \) is isometry, then \(VTV^* \) is also \(p - (\alpha, \beta) \) normal operator.

Proof. Let \(T \in B(H) \), there exists some positive operators \(K_1 \) and \(K_2 \) such that

\[|T^*|^{2p} = |T|^p K_1 |T|^p \]

\[|T|^{2p} = |T^*|^p K_2 |T^*|^p \]

Let

\[|T_0^*|^{2p} = V |T^*|^{2p} V^* \]

\[= V |T|^p K_1 |T|^p V^* \]

\[= |T_0|^p V K_1 V^* |T_0|^p (\text{ since } V \text{ is isometry }). \]

Let

\[|T_0|^{2p} = V |T|^{2p} V^* \]

\[= V |T^*|^p K_2 |T^*|^p V^* \]

\[= |T_0|^p V K_2 V^* |T_0|^p (\text{ since } V \text{ is isometry }). \]

\(VTV^* \) is \(p - (\alpha, \beta) \) normal operator.
Theorem 2.7. Let T be $p-(\alpha, \beta)$ normal operator, then there exist $M > 0$ such that
\[\| T^k x \|^2 \leq M_p \| T^{k-1} x \| \| T^{k+1} x \| \] for all unit vectors $x \in H$.

Proof. T is $p-(\alpha, \beta)$ normal operator

\[
\begin{align*}
\| T^{k+1} x \|^2 &= (T^{k+1} x, T^{k+1} x) \\
&= (T^* T T^k x, T^k x) \\
&= ((|T|^{2p})^{1/p} T^k x, T^k x) \\
&\geq (|T|^{2p} T^k x, T^k x)^{1/p} \| T^k x \|^2 (1 - 1/p) \\
&\geq \beta^{-2/p}(|T|^{2p} T^k x, T^k x)^{1/p} \| T^k x \|^2 (1 - 1/p) \\
&\geq \beta^{-2/p}(T^2 T^{k-1} x, T^{k-1} x)^{1/p} \| T^k x \|^2 (1 - 1/p) \\
&\geq \beta^{-2/p}(T^2 T^{k-1} x, T^{k-1} x)^{p+1/p} \| T^k x \|^2 (1 - 1/p) \| T^{k-1} x \|^2 (1 - 1/p) \\
&\geq \beta^{-2/p} \| T^k x \|^4 \| T^{k-1} x \|^2 \\
\| T^k x \|^2 &\leq \beta^{1/p} \| T^{k-1} x \| \| T^{k+1} x \|
\end{align*}
\]

\[\Box \]

Theorem 2.8. Let T be $p-(\alpha, \beta)$ normal operator and S is a self-adjoint operator on H. If $T S$ is a contraction, then $\alpha \leq \| T S \|^p \leq \beta$.

Proof. T is $p-(\alpha, \beta)$ normal operator, we have

\[
\begin{align*}
\alpha \| T S x \|^p &\leq \| T^* S^* x \|^p \leq \beta \| T S x \|^p \\
\alpha \| x \|^p &\leq \| (S T)^* x \|^p \leq \beta \| x \|^p \\
\alpha &\leq \| S T \|^p \leq \beta \\
\alpha &\leq \| T S \|^p \leq \beta.
\end{align*}
\]

\[\Box \]

Lemma 2.9. If T is $p-(\alpha, \beta)$ normal operator such that $\alpha \beta = 1$, then T^* is also $p-(\alpha, \beta)$ normal operator.

Proof. From the definition of $p-(\alpha, \beta)$ normal operator

\[
\begin{align*}
\alpha^2 (T^* T)^p &\leq (T T^*)^p \leq \beta^2 (T^* T)^p \\
\alpha^4 (T^* T)^p &\leq \alpha^2 (T T^*)^p \leq \alpha^2 \beta^2 (T^* T)^p
\end{align*}
\]

and

\[
\begin{align*}
\alpha^2 \beta^2 (T^* T)^p &\leq \beta^2 (T T^*)^p \leq \beta^4 (T^* T)^p
\end{align*}
\]

(2.1)
From above two equations,
\[\alpha^2(T^*T)^p \leq \alpha^2\beta^2(T^*T)^p \leq \beta^2(TT^*)^p. \]

Therefore,
\[\alpha^2(TT^*)^p \leq (T^*T)^p \leq \beta^2(TT^*)^p \]

\(T^* \) is also \(p - (\alpha, \beta) \) normal operator if \(\alpha\beta = 1 \). \(\square \)

Theorem 2.10. If \(T \) is \(p - (\alpha, \beta) \) normal operator and \(S \) is an unitary operator such that \(TS = ST \) then \(C = TS \) is also \(p - (\alpha, \beta) \) normal operator.

Proof.
\[
\alpha^2(C^*C)^p \leq CC^*p \leq \beta^2(C^*C)^p \\
\alpha^2((TS)^*TS)^p \leq TS(TS)^*p \leq \beta^2((TS)^*TS)^p \\
\alpha^2(S^*T^*TS)^p \leq TSS^*T^*p \leq \beta^2(S^*T^*TS)^p \\
\alpha^2(T^*S^*ST)^p \leq (TT^*)^p \leq \beta^2(T^*S^*ST)^p \\
\alpha^2(T^*T)^p \leq (TT^*)^p \leq \beta^2(T^*T)^p (\text{since } S \text{ is unitary}).
\]

Hence, \(TS \) is \(p - (\alpha, \beta) \) normal operator. \(\square \)

3. **Aluthge Transformation on powers of \(p - (\alpha, \beta) \) - normal operators**

An operator \(T \) can be decomposed into \(T = U|T| \) where \(U \) is partial isometry and \(|T| \) is square root of \(T^*T \) with \(N(U) = N(|T|) \) and this kernal condition \(N(U) = N(|T|) \) uniquely determines \(U \) and \(|T| \) in the polar decomposition of \(T \). In this section \(T = U|T| \) denotes the polar decomposition satisfying the kernal condition \(N(U) = N(|T|) \).

In this section, we consider new properties as an extension of \(p \) - hyponormal operators using the generalized Aluthge transform. In this section, we prove that if \(T \) is \(p - (\alpha, \beta) \) - normal operator then \(T^n \) is \(\frac{n}{p} - (\alpha, \beta) \) - normal operator for all positive integer \(n \). Moreover, we prove that if \(T = U|T| \) is \(p - (\alpha, \beta) \) - normal operator for \(0 < p < 1 \), the Aluthge transform \(\tilde{T} = |T|^{\frac{1}{p}}U|T|^{\frac{1}{p}} \) is \((p + \frac{1}{2}) - (\alpha, \beta) \) - normal operator.

For an operator \(T = U|T| \) defines \(\tilde{T} \) as follows:
\[\tilde{T}_{s,t} = |T|^sU|T|^t \]
for \(s, t > 0 \) which is called the generalized Aluthge transform of \(T \). In this section, we will study \(p - (\alpha, \beta) \) - normal operators using their generalized Aluthge transform.

Theorem 3.1. **Furuta Inequality** [4] Let \(A \geq B \geq 0 \). Then for all \(r > 0 \),
\[
(1) \ (B^{\frac{1}{p}}A^pB^{\frac{1}{p}})^{\frac{1}{q}} \geq (B^{\frac{1}{p}}B^pB^{\frac{1}{p}})^{\frac{1}{q}} \\
(2) \ (A^{\frac{1}{p}}A^pA^{\frac{1}{p}})^{\frac{1}{q}} \geq (A^{\frac{1}{p}}B^pA^{\frac{1}{p}})^{\frac{1}{q}}
\]
for \(p \geq 0, q \geq 1 \) with \((1 + r)q \geq p + r \).
Theorem 3.2. Let $T = U |T|$ be the polar decomposition of $p - (\alpha, \beta)$ - normal operator for $0 < p \leq 1$ then

1) $\tilde{T}_{s,t} = |T|^s U |T|^t$ is $\frac{p + \min(s, t)}{s + t}$ - normal for $s, t > 0$ such that $\max(s, t) \geq p$.

2) $\tilde{T}_{s,t}$ is (α, β) - normal for $0 < s, t \leq p$.

Proof. Let T be $p - (\alpha, \beta)$ - normal operator then

$$\alpha^2 (T^* T)^p \leq (TT^*)^p \leq \beta^2 (T^* T)^p$$

$$\alpha^2 |T|^{2p} \leq |T^*|^{2p} \leq \beta^2 |T|^{2p}$$

(1) Assume $A = \alpha^2 |T|^{2p}$, $B = |T^*|^{2p}$ and $C = \beta^2 |T|^{2p}$. Then,

$$\frac{(\tilde{T}_{s,t}^* \tilde{T}_{s,t})^{p + \min(s, t)}}{s + t} = (|T|^s U^* |T|^{2s} U |T|^t) \frac{p + \min(s, t)}{s + t}$$

$$= U^*(|T|^s |T|^{2s} |T|^t) \frac{p + \min(s, t)}{s + t} U$$

$$= U^*(\beta^{-2s/p} B^t/2p C^s/p B^{t/2p}) \frac{p + \min(s, t)}{s + t} U$$

$$\geq \beta^{-2s/p} (p + \min(s, t)) \frac{p + \min(s, t)}{s + t} \geq \beta^{-2s/p} (p + \min(s, t)) |T|^{2(p + \min(s, t))}$$

(2) Assume $\tilde{T}_{s,t}^* \tilde{T}_{s,t}$ then

$$\frac{(\tilde{T}_{s,t}^* \tilde{T}_{s,t})^{p + \min(s, t)}}{s + t} = (|T|^s U^* |T|^{2s} U |T|^t) \frac{p + \min(s, t)}{s + t}$$

$$= U^*(|T|^s |T|^{2s} |T|^t) \frac{p + \min(s, t)}{s + t} U$$

$$= U^*(\alpha^{-2s/p} B^t/2p A^s/p B^{t/2p}) \frac{p + \min(s, t)}{s + t} U$$

$$\leq \alpha^{-2s/p} (p + \min(s, t)) \frac{p + \min(s, t)}{s + t} \leq \alpha^{-2s/p} (p + \min(s, t)) |T|^{2(p + \min(s, t))}$$

So, we have,

$$|T|^{2(p + \min(s, t))} \geq \alpha^{2s/p} (\tilde{T}_{s,t}^* \tilde{T}_{s,t}) \frac{p + \min(s, t)}{s + t} \quad (3.1)$$

and

$$|T|^{2(p + \min(s, t))} \leq \beta^{2s/p} (\tilde{T}_{s,t}^* \tilde{T}_{s,t}) \frac{p + \min(s, t)}{s + t} \quad (3.2)$$
From (3.1), (3.2), (3.3) and (3.4), we have

\[
(\widetilde{T}_{s,t}\widetilde{T}_{s,t})^{\frac{p+\min(s,t)}{s+t}} = (|T|^sU|T|^{2t}U^*|T|^s)^{\frac{p+\min(s,t)}{s+t}}
\]
\[
= (\frac{C}{\beta^2})^{s/2p}T^{\frac{2t}{s/2p}(\frac{C}{\beta^2})^{s/2p}}^{\frac{p+\min(s,t)}{s+t}}
\]
\[
= (\frac{C}{\beta^2})^{s/2p}B^\frac{1}{p}(\frac{C}{\beta^2})^{s/2p}T^{\frac{2t}{s/2p}(\frac{C}{\beta^2})^{s/2p}}^{\frac{p+\min(s,t)}{s+t}}
\]
\[
\leq \beta^{-2s/p(p+\min(s,t))}T^{\frac{2t}{s/2p}(\frac{C}{\beta^2})^{s/2p}}^{\frac{p+\min(s,t)}{s+t}}
\]
\[
\leq (\beta)\frac{p+\min(s,t)}{p}\left(\widetilde{T}_{s,t}\widetilde{T}_{s,t}\right)^{\frac{p+\min(s,t)}{s+t}}
\]

Applying Lowner - Heinz Inequality, we have
\[
\min\left(s,t\right)\left(\frac{p+\min(s,t)}{p}\right)^{\frac{p+\min(s,t)}{s+t}}
\]
\[
(\min\left(s,t\right)+\frac{1}{p}(p+\min(s,t)))^{\frac{p+\min(s,t)}{s+t}}
\]
\[
2(p+\min(s,t))\left(\beta\right)^{\frac{p+\min(s,t)}{p}}
\]
\[
\leq \left(\alpha\right)\frac{p+\min(s,t)}{p}\left(\widetilde{T}_{s,t}\widetilde{T}_{s,t}\right)^{\frac{p+\min(s,t)}{s+t}}
\]

So, we have
\[
(\widetilde{T}_{s,t}\widetilde{T}_{s,t})^{\frac{p+\min(s,t)}{s+t}} \leq \left(\beta\right)^{\frac{p+\min(s,t)}{p}}\left(\widetilde{T}_{s,t}\widetilde{T}_{s,t}\right)^{\frac{p+\min(s,t)}{s+t}}
\]

(3.3)

and

(3.4)

From (3.1), (3.2), (3.3) and (3.4), we have
\[
(\alpha)^{\frac{p+\min(s,t)}{p}}(\widetilde{T}_{s,t}\widetilde{T}_{s,t})^{\frac{p+\min(s,t)}{s+t}} \leq (\widetilde{T}_{s,t}\widetilde{T}_{s,t})^{\frac{p+\min(s,t)}{s+t}} \leq (\beta)\frac{p+\min(s,t)}{p}\left(\widetilde{T}_{s,t}\widetilde{T}_{s,t}\right)^{\frac{p+\min(s,t)}{s+t}}
\]

(3.4)

Since \[
1 \geq \left(\frac{1}{p}(s/p) + (t/p)\right) \geq (s/p) + (t/p)
\]

Therefore \(\widetilde{T}_{s,t}\) is \(\frac{p+\min(s,t)}{s+t}\) - normal.

(2) Applying Lowner - Heinz Inequality, we have
\[
\alpha^{2s/p}T^{2s} \leq |T|^s \leq \beta^{2s/p}T^{2s}
\]
If $0 < s, t \leq p$, we have
\[
\tilde{T}_{s,t}^* \tilde{T}_{s,t} = |T|^t |U^*| T^{2s} U |T|^t \\
\geq \frac{|T|^t |U^*| T^{2s} U |T|^t}{\beta^{\frac{2s}{p}}} \\
\geq \beta^{\frac{2s}{p}} |T|^t |U^*| T^{2s} U |T|^t \\
\geq \beta^{\frac{2s}{p}} |T|^{2(s+t)}
\]

Similarly, we have
\[
\tilde{T}_{s,t}^* \tilde{T}_{s,t} \geq \beta^{\frac{2s}{p}} |T|^{2(s+t)}. \quad (3.5)
\]

Since $|T^*| \geq |T|^{\frac{1}{\alpha}}, |T^*| \leq \beta^{\frac{1}{\beta}} |T|$,
\[
\tilde{T}_{s,t}^* \tilde{T}_{s,t} \leq \beta^{\frac{2s}{p}} |T|^{2(s+t)}. \quad (3.6)
\]

\[
\tilde{T}_{s,t}^* \tilde{T}_{s,t} = |T|^t |U| T^{2t} U |T|^t \\
= |T|^s |T^*|^{2t} |T|^s
\]

Since $|T^*| \geq |T|^{\frac{1}{\alpha}}, |T^*| \leq \beta^{\frac{1}{\beta}} |T|$, we have
\[
\tilde{T}_{s,t}^* \tilde{T}_{s,t} \leq \beta^{\frac{2s}{p}} |T|^{2(s+t)}. \quad (3.7)
\]

\[
\tilde{T}_{s,t}^* \tilde{T}_{s,t} \geq \alpha^{\frac{2s}{p}} |T|^{2(s+t)}. \quad (3.8)
\]

From (3.5), (3.6), (3.7) and (3.8), we have
\[
\alpha^{\frac{2(s+t)}{p}} \tilde{T}_{s,t} \tilde{T}_{s,t} \leq \tilde{T}_{s,t} \tilde{T}_{s,t} \leq \beta^{\frac{2(s+t)}{p}} \tilde{T}_{s,t} \tilde{T}_{s,t}. \quad \text{Therefore } \tilde{T}_{s,t} \text{ is } (\alpha, \beta) \text{- normal}. \quad \Box
\]

Corollary 3.3. Let $T = U |T|$ be $p - (\alpha, \beta)$ - normal operator for $0 < p < 1$, then
(1) $\tilde{T} = |T|^t U |T|^t$ is $(p + \frac{1}{2}) - (\alpha, \beta)$ - normal for $0 < p < 1/2$.
(2) \tilde{T} is (α, β) - normal operator for $1/2 \leq p < 1$.

Theorem 3.4. Let $T = U |T|$ be $p - (\alpha, \beta)$ - normal operator for $0 < p < 1$, then
(1) $\beta^{-(p+1)(n-1)} (T^* T)^{p+1} \leq (T^* T^n)^{\frac{p+1}{n}} \leq \alpha^{-(p+1)(n-1)} (T^* T)^{p+1}$
(2) $\beta^{-(p+1)(n-1)} (T^n T^*)^{\frac{p+1}{n}} \leq (T T^*)^{p+1} \leq \alpha^{-(p+1)(n-1)} (T^n T^*)^{\frac{p+1}{n}}$ holds for all positive integer n.

Proof. (1) Let $A_n = (T^* T^n)^{\frac{p}{n}} = |T^n|^{\frac{2p}{n}}$ and $B_n = (T^n T^*)^{\frac{p}{n}} = |T^n|^{\frac{2p}{n}}$ for all positive integer n.

By induction $\beta^{-(p+1)(n-1)} (T^* T)^{p+1} \leq (T^* T^n)^{\frac{p+1}{n}} \leq \alpha^{-(p+1)(n-1)} (T^* T)^{p+1}$ holds for $n = k$. Since $A_k = (T^k T^k)^{p/k} \geq \beta^{-(k-1)} (T^* T)^{p} \geq \beta^{-(k+1)} |T|^2$.

\[A_k = (T^*T)^{p/k} \leq \alpha^{-(k-1)} (T^*T)^p \leq \alpha^{-(k+1)} B_1. \]

It follows that
\[
(T^{(k+1)*}T^{k+1}) \frac{p+1}{k+1} = (U^* | T^* | T^k | T^* | U) \frac{p+1}{k+1} \\
= U^* (| T^* | T^k | T^* |) \frac{p+1}{k+1} U \\
= U^* (B_1^{\frac{1}{2p}} A_k^{\frac{1}{2p}} B_1^{\frac{1}{2p}}) \frac{p+1}{k+1} U \\
\geq \beta \frac{k(p+1)}{p} (T^*T)^{p+1}.
\]

Similarly
\[
(T^{(k+1)*}T^{k+1}) \frac{p+1}{k+1} \leq \alpha \frac{k(p+1)}{p} (T^*T)^{p+1}.
\]
Hence \(\beta \frac{-(p+1)}{p} (n-1) (T^*T)^{p+1} \leq (T^n T^n^*) \frac{p+1}{n} \leq \alpha \frac{-(p+1)}{p} (n-1) (T^*T)^{p+1} \).

(2) Assume that \(\beta \frac{-(p+1)}{p} (n-1) (T^n T^n^*) \frac{p+1}{n} \leq (T^*T)^{p+1} \leq \alpha \frac{-(p+1)}{p} (n-1) (T^n T^n^*) \frac{p+1}{n} \) holds for \(n = k \). Then
\[A_1 = (T^*T)^p \geq \beta^{-2} (TT^*)^p \geq \beta^{-2(k+1)} (T^{k} T^{k*})^{p/k} \geq \beta^{-(k+1)} B_k. \]
Similarly \(A_1 \leq \alpha^{-(k+1)} B_k \). Hence we have
\[
(T^{(k+1)*}T^{k+1}) \frac{p+1}{k+1} = (U^* | T^* | T^k | T^* | U) \frac{p+1}{k+1} \\
= U^* (| T^* | T^k | T^* |) \frac{p+1}{k+1} U \\
= U^* (A_1^{\frac{1}{2p}} B_1^{\frac{1}{2p}} A_1^{\frac{1}{2p}}) \frac{p+1}{k+1} U \\
\leq \beta \frac{k(p+1)}{p} (U^* A_1^{\frac{1}{2p}} A_1^{\frac{1}{2p}} A_1^{\frac{1}{2p}}) \frac{p+1}{k+1} U \text{ by Furuta Inequality} \\
\leq \beta \frac{k(p+1)}{p} |T^*|^{2(p+1)}.
\]
Similarly, \((T^{(k+1)*}T^{k+1}) \frac{p+1}{k+1} \geq \alpha \frac{k(p+1)}{p} |T^*|^{2(p+1)}. \)

Therefore, \(\beta \frac{-(p+1)}{p} (n-1) (T^n T^n^*) \frac{p+1}{n} \leq (T^*T)^{p+1} \leq \alpha \frac{-(p+1)}{p} (n-1) (T^n T^n^*) \frac{p+1}{n} \) holds for all positive integer \(n \).

\[\square \]

Corollary 3.5. If \(T \) is \(p - (\alpha, \beta) \) normal operator then \(T^n \) is \(\frac{p}{n} - (\alpha, \beta) \) normal operator for all positive integer \(n \).

Proof. Let \(T \) be \(p - (\alpha, \beta) \) normal operator, then by Theorem 3.4, we have

So, \(T^n \) is \(\frac{p}{n} - (\alpha, \beta) \) normal operator.

\[\square \]
4. Properties of \(p-(\alpha, \beta) \) - normal operators

Definition 4.1. An operator \(T \) is called totally \(p-(\alpha, \beta) \) - normal, if the translate \(T - \lambda \) is \(p-(\alpha, \beta) \) - normal for all \(\lambda \in C \).

Definition 4.2. An operator \(T \) is called algebraically \(p-(\alpha, \beta) \) - normal, if there exists a non constant polynomial \(p \) such that \(p(T) \) is \(p-(\alpha, \beta) \) - normal.

Definition 4.3. Let \(T \in B(H) \). The reducing point spectrum of \(T \), \(\sigma_{pr}(T) \) is the set of scalars \(\lambda \) for which there exists \(x \neq 0 \) such that \(Tx = \lambda x \) and \(T^* x = \overline{\lambda} x \).

Definition 4.4. An operator \(T \in B(H) \) is called finite if \(\|TX - XT - I\| \geq 1 \) for every \(X \in B(H) \).

Equivalently if \(\sigma_{pr}(T) \neq 0 \) then \(T \) is a finite operator.

Theorem 4.5. Every totally \(p-(\alpha, \beta) \) - normal operator is finite.

Proof. Since \(\ker(T - \lambda)^p = \ker((T - \lambda)^*)^p \) and since \(T - \lambda \) is \(p-(\alpha, \beta) \) - normal for every \(\lambda \), we get \(\sigma_p(T) = \sigma_{pr}(T) \). And since \(\partial \sigma(T) \subset \sigma_p(T) \), we get \(\sigma_{pr}(T) \neq 0 \). \(\square \)

Definition 4.6. Let \(\mathcal{M}^2 = \{AB : A, B \in \mathcal{M}\} \) where \(\mathcal{M} \) denote the class of all self adjoint operators. This class is defined and its various properties are studied in [9]

Theorem 4.7. An \(p-(\alpha, \beta) \) - normal operator \(T \in \mathcal{M}^2 \) is necessarily normal.

Proof. Let \(T = AB \) with \(A = A^* \) and \(B = B^* \). Consider the following two cases:

Case 1: \(A \) is injective, Then \(AT^* = TA \) and hence \(T \) is normal [9] Theorem 3.a.

Case 2: \(A \) has a non-trivial null space \(N \).

Let \(A = \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix} \) and \(B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix} \)

with respect to \(N^* \oplus N \) where \(A_1 \) is an injective self adjoint operator and \(B_1 \) is self adjoint. Then \(T = \begin{pmatrix} A_1B_1 & A_1B_2 \\ 0 & 0 \end{pmatrix} \)

Since \(A_1B_1 \) is the restriction of \(T \) to an invariant subspace, \(A_1B_1 \) is \(p-(\alpha, \beta) \) - normal and hence by case 1 it is normal. By [9] (Theorem 4) \(N \) is a reducing invariant subspace of \(T \) and hence \(A_1B_2 = 0 \). This implies \(T \) is normal. \(\square \)

Theorem 4.8. Every \(p-(\alpha, \beta) \) - normal operator can be written as \(T = A \oplus S \) where \(A \) is normal and \(S \) is \(p-(\alpha, \beta) \) - normal with \(\sigma_w(S) = \sigma(S) \).

Proof. By Weyl’s theorem \(\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T) \). Let \(N \) be a closed linear subspace of \(H \) generated by \(\lambda_i \in \pi_{00}(T) \bigcup N(T - \lambda_i) \) Then \(N \) is reduced by \(T \). The decomposition \(H = N \oplus N^* \) gives \(T = A \oplus S \) where \(A \) is normal and \(S \) is \(p-(\alpha, \beta) \) - normal and \(\sigma_w(S) = \sigma(S) \). \(\square \)
References

1. A. Aluthge, *on p-hyponormal operators for 0 < p < 1*, Integral Equations operator theory.

Received: February 21, 2014