New Extension of q-Bernoulli Polynomials

Jin-Woo Park

Department of Mathematics Education
Sehan University, YoungAm-gun
Chunnam, 526-702, Republic of Korea

Copyright © 2014 Jin-Woo Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we construct new q-extension of Bernoulli polynomials and Bernoulli polynomials of order k. These q-Bernoulli polynomials are useful to study various identities of Carlitz’s q-Bernoulli numbers.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: q-Bernoulli polynomials, modified q-Bernoulli polynomials with weight α and weak weight β, modified q-Bernoulli polynomials of higher order, modified q-Bernoulli polynomials of higher order with weight α and weak weights β_1, \ldots, β_k

1. Introduction

Throughout this paper $\mathbb{Z}_p, \mathbb{Q}_p$ and \mathbb{C}_p will respectively denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = \frac{1}{p}$.

When one speaks of q-extension, q is considered in many ways such as indeterminate, a complex number $q \in \mathbb{C}$ or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, one normally assume that $|q| < 1$. If $q \in \mathbb{C}_p$, we assume that $|1 - q|_p < 1$ so that $q^x = \exp(x \log q)$ for $|x|_p \leq 1$. The q-number of x is denoted by

$$[x]_q = \frac{1 - q^x}{1 - q}.$$

Note that \(\lim_{q \to 1} [x]_q = x\). Let \(d\) be a fixed positive integer and let \(p\) be a fixed prime number. We set
\[
X_d = \lim_{N \to \infty} \mathbb{Z}/dp^N \mathbb{Z}, \quad X^* = \bigcup_{0 < a < dp} (a + dp\mathbb{Z}_p),
\]
\[a + dp^N \mathbb{Z}_p = \{ x \in X | x \equiv a \pmod{dp^N} \},\]
where \(a \in \mathbb{Z}\) lies in \(0 \leq a < dp^N\).

Let \(UD(\mathbb{Z}_p)\) be the space of uniformly differentiable functions on \(\mathbb{Z}_p\). For \(f \in UD(\mathbb{Z}_p)\), the \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\) is defined by Kim as follows:
\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x) q^x \quad (\text{see } [10, 11]). \quad (1.1)
\]

As is well known, Bernoulli polynomials are defined by the generating function to be
\[
\frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} \frac{B_n(x)}{n!} t^n \quad \text{for } |t| < 2\pi \quad \text{with } t \in \mathbb{C}. \quad (1.2)
\]
In the special case, \(x = 0\), \(B_n = B_n(0)\) are called the \(n\)-th Bernoulli numbers. From (1.2), we note that
\[
B_n(x) = \sum_{k=0}^{n} \binom{n}{k} B_k x^{n-k} = \sum_{k=0}^{n} \binom{n}{k} B_{n-k} x^k. \quad (1.3)
\]

In [4, 5], L. Carlitz defined the \(q\)-extension of Bernoulli numbers as follows:
\[
\beta_{0,q} = 1, q(q\beta + 1)^k - \beta_{k,q} = \delta_{k,1} \quad (1.4)
\]
with the usual convention of replacing \(\beta^l\) by \(\beta_{l,q}\) where \(\delta_{k,1}\) is the Kronecker’s symbol.

Note that, from (1.4), we note that
\[
\beta_{n,q} = \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{l + 1}{[l+1]_q}, \quad (n \geq 0). \quad (1.5)
\]
L. Carlitz have defined \(q\)-extension of Bernoulli polynomials as follows:
\[
\beta_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} [x]_q^{n-l} q^{lx} \beta_{l,q}, \quad (\text{see } [3,4]). \quad (1.6)
\]
In [10], Kim showed that Carlitz’s \(q\)-Bernoulli numbers and polynomials can be expressed as an \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\) as follows:
\[
\beta_{n,q} = \int_{\mathbb{Z}_p} [x]_q^n d\mu_q(x), \quad \beta_{n,q}(x) = \int_{\mathbb{Z}_p} [x + y]_q^n d\mu_q(x). \quad (1.6)
\]
New Extension of q-Bernoulli polynomials

q-Bernoulli numbers and polynomials have been studied by many mathematicians, and possess many interesting properties (see [1-17]). As new extension of Bernoulli polynomials, T. Kim et. al., Seo et. al., Y. Simsek gave new q-extensions of Bernoulli polynomials (see [13, 16, 17]). In [16], authors defined modified q-Bernoulli polynomials $\tilde{\beta}_{n,q}(x)$ by generating function, and represent $\tilde{\beta}_{n,q}(x)$ as a p-adic q-integral on \mathbb{Z}_p.

In this paper, we construct new q-extension of Bernoulli polynomials, and Bernoulli polynomials of order k. Finally, we investigate several properties of those polynomials.

2. A new extension of q-Bernoulli polynomials

As a new q-extension of Bernoulli polynomials, we define the modified q-Bernoulli polynomials which are defined by the generation function to be

$$\sum_{n=0}^{\infty} \tilde{\beta}_{n,q}(x)(1-q)^n \frac{t^n}{n!} = \int_{\mathbb{Z}_p} q^{-y}e^{(x+y)(1-q)t}d\mu_q(y).$$ \hspace{1cm} (2.1)

Note that, by (1.1), the following equations are obtained easily:

$$\tilde{B}_{n,q} = \int_{\mathbb{Z}_p} q^{-x}q^n d\mu_q(x) = \lim_{N \to \infty} \frac{1}{p^{N-1}} \sum_{x=0}^{[x]_q} [x]^n_q$$

$$= \frac{1}{(1-q)^n} \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) (-1)^l \frac{l^t}{[l]_q},$$ \hspace{1cm} (2.2)

and $\tilde{\beta}_{n,q}$ is called n-th modified q-Bernoulli numbers which are defined in [13]. From (2.2), we obtain the following equation:

$$\int_{\mathbb{Z}_p} q^{-y}e^{(x+y)(1-q)t}d\mu_q(y)$$

$$= e^{x(1-q)t} \sum_{n=0}^{\infty} (1-q)^n \int_{\mathbb{Z}_p} q^{-y}[y]_q^n d\mu_q(y) \frac{t^n}{n!}$$

$$= e^{x(1-q)t} \sum_{n=0}^{\infty} \sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) (-1)^l \frac{l^t}{[l]_q} \frac{t^n}{n!}$$

$$= e^{x(1-q)+1-1)l} \sum_{l=0}^{\infty} (-1)^l \frac{l^t}{[l]_q} \frac{t^n}{n!}$$

$$= \left(\sum_{m=0}^{\infty} ((1-q)x+1)^m \frac{t^m}{m!} \right) \left(\sum_{l=0}^{\infty} (-1)^l \frac{l^t}{[l]_q} \frac{t^n}{n!} \right)$$

$$= \sum_{n=0}^{\infty} \sum_{l=0}^{n} (-1)^l \left(\begin{array}{c} n \\ l \end{array} \right) \frac{l^t}{[l]_q} ((1-q)x+1)^{n-l} \frac{t^n}{n!}. \hspace{1cm} (2.3)
Thus, by (2.1) and (2.3), we get
\[
\bar{\beta}_{n,q}(x) = \frac{1}{(1-q)^n} \sum_{l=0}^{n} (-1)^l \binom{n}{l} \frac{l}{[l]_q} ((1-q)x + 1)^{n-l}
\]
\[
= \frac{1}{(1-q)^n} \sum_{l=0}^{n} \sum_{j=0}^{n-l} (-1)^l \binom{n}{l} \frac{l}{[l]_q} (1-q)^j x^j.
\]
(2.4)

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.1. For \(n \geq 0 \),
\[
\bar{\beta}_{n,q}(x) = \frac{1}{(1-q)^n} \sum_{l=0}^{n} (-1)^l \binom{n}{l} \frac{l}{[l]_q} ((1-q)x + 1)^{n-l}
\]
\[
= \sum_{l=0}^{n} \sum_{j=0}^{n-l} (-1)^l \binom{n}{l} \frac{l}{[l]_q} (1-q)^j x^j.
\]
(2.5)

Note that, by (2.1), we get
\[
\sum_{n=0}^{\infty} \bar{\beta}_{n,q}(x)(1-q)^n \frac{t^n}{n!} = \int_{\mathbb{Z}_p} q^{-y} e^{(x+[y]_q)(1-q)t} d\mu_q(y)
\]
\[
= \sum_{n=0}^{\infty} (1-q)^n \int_{\mathbb{Z}_p} q^{-y} (x+[y]_q)^n d\mu_q(y) \frac{t^n}{n!}.
\]
(2.6)

Thus, by (2.6), we obtain the following theorem.

Theorem 2.2. For \(n \geq 0 \),
\[
\bar{\beta}_{n,q}(x) = \int_{\mathbb{Z}_p} q^{-y} (x+[y]_q)^n d\mu_q(y).
\]

When \(x = 0 \), \(\bar{\beta}_{n,q}(0) = \bar{B}_{n,q} \) are \(n \)-th modified \(q \)-Bernoulli numbers. Note that
\[
\int_{\mathbb{Z}_p} q^{-y} (x+[y]_q)^n d\mu_q(y) = \sum_{l=0}^{n} \binom{n}{l} x^l \int_{\mathbb{Z}_p} q^{-y} [y]_q^{n-l} d\mu_q(y)
\]
\[
= \sum_{l=0}^{n} \binom{n}{l} x^l \bar{B}_{n-l,q}.
\]
(2.7)

Therefore, by (2.7), we obtain the following corollary.

Corollary 2.3. For \(n \geq 0 \), we have
\[
\bar{\beta}_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} \bar{B}_{n-l,q} x^l = \sum_{l=0}^{n} \binom{n}{l} \bar{B}_{l,q} x^{n-l},
\]
where \(\bar{B}_{n,q} \) are the \(n \)-th modified \(q \)-Bernoulli numbers.
3. A new approach to modified q-Bernoulli polynomials of order k

From now on, we consider the modified q-Bernoulli numbers of order k as follows:

\[
\tilde{b}_{n,q} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} q^{-x_1-\cdots-x_k} [x_1 + \cdots + x_k]^n d\mu_q(x_1) \cdots d\mu_q(x_k).
\]

Note that, by (1.1),

\[
\tilde{b}_{n,q} = \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \left(\frac{l}{[l]_q} \right)^k.
\]

Let us consider the modified q-Bernoulli polynomials of order k as follows:

\[
\tilde{b}_{n,q}(x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x + [x_1 + \cdots + x_k]_q)^n d\mu_q(x_1) \cdots d\mu_q(x_k)
\]

\[
= \sum_{l=0}^{n} \binom{n}{l} \tilde{b}_{n,q} x^{n-l}
\]

where \(\tilde{b}_{n,q}(0) = \tilde{b}_{n,q} \).

By (3.1),

\[
(1-q)^n \tilde{b}_{n,q} = \sum_{l=0}^{n} \binom{n}{l} (-1)^l \left(\frac{l}{[l]_q} \right)^k.
\]

Consider the equation

\[
\sum_{n=0}^{\infty} (1-q)^n \tilde{b}_{n,q} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \left(\frac{l}{[l]_q} \right)^k \frac{t^l}{l!}
\]

\[
= \left(\sum_{m=0}^{\infty} \frac{t^m}{m!} \right) \left(\sum_{l=0}^{\infty} (-1)^l \left(\frac{l}{[l]_q} \right)^k \frac{t^l}{l!} \right)
\]

\[
= e^t \left(\sum_{l=0}^{\infty} (-1)^l \left(\frac{l}{[l]_q} \right)^k \frac{t^l}{l!} \right).
\]
Since
\[e^{(1-q)x} \sum_{n=0}^{\infty} (1-q)^n \tilde{b}_{n,q} \frac{t^n}{n!} = \left(\sum_{l=0}^{\infty} (1-q)^l \frac{t^l}{l!} \right) \left(\sum_{n=0}^{\infty} (1-q)^n \tilde{b}_{n,q} \frac{t^n}{n!} \right) = \sum_{m=0}^{\infty} (1-q)^m \sum_{n=0}^{m} \binom{m}{n} \tilde{b}_{n,q} x^{m-n} \frac{t^m}{m!} = \sum_{m=0}^{\infty} (1-q)^m \tilde{b}_{m,q}(x) \frac{t^m}{m!} \tag{3.3} \]

and
\[e^{(1-q)x} \left(e^{t} \sum_{l=0}^{\infty} (1-q)^l \frac{t^l}{l!} \right) = e^{((1-q)x+1)t} \left(\sum_{l=0}^{\infty} (1-q)^l \frac{t^l}{l!} \right) = \sum_{m=0}^{\infty} (1-q)x+1)^m \frac{t^m}{m!} \left(\sum_{l=0}^{\infty} (1-q)^l \frac{t^l}{l!} \right) = \sum_{n=0}^{\infty} \sum_{l=0}^{n} (1-q)^l \binom{n}{l} \frac{t^l}{l!} ((1-q)x+1)^{n-l} \frac{t^n}{n!}. \tag{3.4} \]

By (3.3) and (3.4),

\[(1-q)^n \tilde{b}_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} (1-q)^l \frac{t^l}{l!} ((1-q)x+1)^{n-l} \]
\[= \sum_{l=0}^{n} \sum_{j=0}^{n-l} \binom{n}{l} \binom{n-l}{j} (1-q)^l \frac{t^l}{l!} (1-q)^j x^j. \]

Thus, we have the following result.

Theorem 3.1. For \(n \geq 1 \),

\[\tilde{b}_{n,q}(x) = \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (1-q)^l \frac{t^l}{l!} ((1-q)x+1)^{n-l} \]
\[= \sum_{l=0}^{n} \sum_{j=0}^{n-l} \binom{n}{l} \binom{n-l}{j} (1-q)^l \frac{t^l}{l!} (1-q)^j x^j. \]
New Extension of q-Bernoulli polynomials

Note that, by (3.2) and (3.3), the generating function of $\tilde{b}_{n,q}$ is represented as follows:

$$
\sum_{n=0}^{\infty} (1 - q)^n \tilde{b}_{n,q}(x) \frac{t^n}{n!} = e^{(1-q)x} \sum_{n=0}^{\infty} (1 - q)^n \tilde{b}_{n,q} \frac{t^n}{n!} = e^{(1-q)x+1} t \sum_{l=0}^{\infty} (-1)^l \left(\frac{l}{[l]_q} \right) \frac{t^l}{l!}.
$$

So, we have the following corollary.

Corollary 3.2. For $n \geq 0$,

$$
\sum_{n=0}^{\infty} (1 - q)^n \tilde{b}_{n,q}(x) \frac{t^n}{n!} = e^{(1-q)x+1} t \sum_{l=0}^{\infty} (-1)^l \left(\frac{l}{[l]_q} \right) \frac{t^l}{l!}
$$

where $\tilde{b}_{n,q}$ are the n-th modified q-Bernoulli numbers of order k.

References

Received: January 15, 2014