Formula for the Number of Spanning Trees in Light Graph

Hajar Sahbani and Mohamed El Marraki

LRIT, Associated Unit to CNRST (URAC No 29)
Mohammed V-Agdal University, B.P.1014 RP, Agdal, Morocco

Abstract

In this paper, we consider the outerplanar graph $L_n[1]$, having $6n+6$ vertices, $12n+9$ edges and $6n+5$ faces, in this graph all faces have degree 3 except for the outside face.

Our approach consists on finding a general formula that calculates the number of spanning trees in the Ligth graph L_n, depending on n.

Mathematics Subject Classification: 05C85, 05C30

Keywords: planar graphs, outer planar, spanning trees, ligth graph

1 Introduction

The number of spanning trees in a planar graph (network) is an important well-studied quantity and invariant of the graph; moreover it is also an important measure of reliability of a network which plays a central role in Kirchhoff’s classical theory of electrical networks. In a graph (network), that contains several cycles, we must remove the redundancies in this network, i.e., we obtain a spanning tree. A spanning tree in a planar graph G is a tree which has the same vertex set as G (tree that passing through all the vertices of the map G)[2].

Generally, the number of spanning trees in a network can be obtained by computing a related determinant of the Laplacian matrix defined by $L(G) =$
$D(G) - A(G)$, with $D(G)$ and $A(G)$ are respectively the matrix of degrees and the adjacency matrix [3, 4]. However, for a large graph, evaluating the relevant determinant is computationally intractable. Wherefore, many works derive formulas to calculate the complexity for some classes of graphs. Bogdanowicz [7] derive the explicit formula $\tau(F_n)$; the number of spanning trees in F_n. A. Modabish and M. El Marraki investigated the number of spanning trees in the star flower planar graph [8]. In [9] the authors proposed an approach for counting the number of spanning trees in the butterfly graph.

In the following, we describe a general method to count the number of spanning trees in the outerplanar light graph L_n [1], our work consist on combining several method as presented in [5], in order to calculate the complexity of L_n.

2 Preliminary Notes

An undirected graph is outerplanar if it can be drawn in the plane without crossings such that all vertices lie on the outerface boundary. That is, no vertex is totally surrounded by edges.

Let G_n the set of outerplanar graph shown in Figure 1. where v_1, s_1 and v_2 are the vertices of the outer face boundary of a plane network that delimit a number n of vertices which is the same between each pair of (v_1, s_1) and (s_1, v_2), also the total number of vertices of G_n is $|V_{G_n}| = 2n + 3$ and $n \geq 1$.

![Figure 1: The family of graphs G_n](image)

The connection of three G_n graphs lead to the outerplanar light graph shown in Figure 2.
Property 2.1 The number of vertices, edges and faces of light graph satisfy respectively: $|V_{L_n}| = |V_{L_{n-1}}| + 6 = 6(n + 1)$, $|E_{L_n}| = |E_{L_{n-1}}| + 12 = 3(3 + 4n)$ and $|F_{L_n}| = |F_{L_{n-1}}| + 6 = 6n + 5$.

Proof: The number of vertices of light graph is calculated recursively as:

$$|V_{L_n}| = |V_{L_{n-1}}| + 6 = \ldots = |V_{L_0}| + 6n = 6(n + 1).$$

The same for edges and faces.

Before presenting the main results we need the following results:

Let $G = G_1 \bullet G_2$ obtained by connecting G_1 and G_2 with a single vertex v_1 [5], then

$$\tau(G_1 \bullet G_2) = \tau(G_1) \times \tau(G_2).$$

(1)

Let G be a planar graph of type $G = G_1 | G_2$, (v_1 and v_2 two vertices of G_1 and G_2 connected by an edge e) [5], then

$$\tau(G) = \tau(G_1) \times \tau(G_2) - \tau(G_1 - e) \times \tau(G_2 - e).$$

(2)

Theorem 2.2 [5] Let $G = G_1 : G_2$ be a planar graph, v_1 and v_2 two vertices of G which is formed by two planar graphs G_1 and G_2, then

$$\tau(G) = \tau(G_1) \times \tau(G_2.v_1v_2) + \tau(G_1.v_1v_2) \times \tau(G_2).$$

Theorem 2.3 [5, 6, 7] The number of spanning trees of the Fan (F_n) shown in the left of Figure 3, with $(n = |V_{F_n}| - 2)$ satisfies:

$$\tau(F_n) = 3\tau(F_{n-1}) - \tau(F_{n-2})$$

$$= \frac{1}{\sqrt{5}} \left(\left(\frac{3 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{3 - \sqrt{5}}{2} \right)^{n+1} \right), \quad n \geq 1$$
3 Main Results

In this section we present some results to calculate the number of spanning trees in some families of outerplanar graphs to evaluate the complexity of light graph \((L_n)\).

3.1 The complexity of \(X_n\) graph

\(X_n\) is the outerplanar graph illustrated on the right of Figure 3, having one vertex of degree \(n\), 1 of degree 4, 2 vertices of degree 2 and the rest of degree 3, where \(|V_{X_n}| = n + 2\).

\[\text{Figure 3: } F_n \text{ and } X_n \text{ graphs}\]

Lemma 3.1 The number of spanning trees of \(X_n\) is equal to the number of spanning trees of the \(n\)-fan:

\[\tau(X_n) = \frac{1}{\sqrt{5}}((\frac{3 + \sqrt{5}}{2})^{n+1} - (\frac{3 - \sqrt{5}}{2})^{n+1}), \ n \geq 1\]

Proof: we apply equation (2)

\[\text{Figure 4: The complexity of } X_n \text{ according to equation (2)}\]

then:

\[\tau(X_n) = 3\tau(F_{n-1}) - \tau(F_{n-2}) = \tau(F_n)\]
3.2 The complexity of G_n graph

G_n is the outerplanar graph represented in Figure 1, with $|V_{G_n}| = 2n + 3$.

Lemma 3.2 The number of spanning trees of the G_n graph depends on $\tau(F_n)$:

$$\tau(G_n) = 2\tau(F_n)\left(5\tau(F_{n+1}) - 12\tau(F_n)\right)$$

Proof: By using equation (2) we get

Figure 5: The complexity of G_n according to equation (2)

with:

\[
\begin{align*}
\tau(X_n) & = \tau(F_n) \quad \text{from Lemma 3.1} \\
\tau(I_n) & = 3\tau(F_{n-2}) \quad \text{from equation (1)}
\end{align*}
\]

then:

$$\tau(G_n) = \tau(F_n)\left(\tau(F_{n+1}) - 3\tau(F_{n-2})\right)$$ (3)

other hand:

$$\tau(F_{n+1}) = 3\tau(F_n) - \tau(F_{n-1}) \implies \tau(F_{n-1}) = 3\tau(F_n) - \tau(F_{n+1})$$ (4)

and:

$$\tau(F_{n-2}) = 3\tau(F_{n-1}) - \tau(F_n) \implies \tau(F_{n-2}) = 8\tau(F_n) - 3\tau(F_{n+1})$$ (5)

we replace $\tau(F_{n-2})$ of equation (5) in (3), then the result.

Corollary 3.3 The complexity of the outerplanar graph G_n is given by the following formula:

$$\tau(G_n) = \left(\frac{6 + 4\sqrt{5}}{5}\right)\left(\frac{7 + 3\sqrt{5}}{2}\right)^n + \left(\frac{6 - 4\sqrt{5}}{5}\right)\left(\frac{7 - 3\sqrt{5}}{2}\right)^n + \frac{18}{5}, \ n \geq 1$$

Proof: We use formula of Theorem 2.3 depending on n in Lemma 3.2, then the result.

3.3 The complexity of H_n graph

H_n is the outerplanar graph presented bellow in Figure 6:a, with $n = \frac{|V_{H_n}| - 2}{2}$.
Lemma 3.4 The complexity of H_n depends on G_n and F_n:

$$\tau(H_n) = \tau(G_n) - \tau(F_n)^2$$

Proof: From equation (2):

$$\tau(H_n) = \tau(F_n)\left(2\tau(F_n) - \tau(F_{n-1}) - 3\tau(F_{n-2})\right)$$ \hspace{1cm} (6)

we replace $\tau(F_{n-1})$ and $\tau(F_{n-2})$ in (6) using equations (4) and (5) of proof of Lemma 3.2, so:

$$\tau(H_n) = \tau(F_n)\left(10\tau(F_{n+1}) - 25\tau(F_n)\right)$$

with: $\tau(G_n) = \tau(F_n)\left(10\tau(F_{n+1}) - 24\tau(F_n)\right)$, from Lemma 3.2.

Corollary 3.5 The complexity of the H_n graph is given by the following formula:

$$\tau(H_n) = \left(\frac{1 + \sqrt{5}}{2}\right)\left(\frac{7 + 3\sqrt{5}}{2}\right)^n + \left(\frac{1 - \sqrt{5}}{2}\right)\left(\frac{7 - 3\sqrt{5}}{2}\right)^n + 4, \; n \geq 1$$
3.4 The complexity of A_n graph

A_n is the outerplanar graph illustrated in Figure 8:a, with $|V_{A_n}| = 4n + 4$.

Lemma 3.6 The number of spanning trees of A_n is calculated by:

$$
\tau(A_n) = 2\tau(G_n) \left(\tau(G_n) - \tau(F_n)^2 \right)
$$

$$
= -\left(\frac{102 + 46\sqrt{5}}{25} \right) \left(\frac{7 + 3\sqrt{5}}{2} \right)^{2n} - \left(\frac{102 - 46\sqrt{5}}{25} \right) \left(\frac{7 - 3\sqrt{5}}{2} \right)^{2n} + \left(\frac{24 - 16\sqrt{5}}{25} \right) \left(\frac{3 - \sqrt{5}}{2} \right)^{2n}
$$

$$
+ \left(\frac{60 + 50\sqrt{5}}{5} \right) \left(\frac{7 + 3\sqrt{5}}{2} \right)^n + \left(\frac{306 - 234\sqrt{5}}{25} \right) \left(\frac{7 - 3\sqrt{5}}{2} \right)^n + \left(\frac{232 + 96\sqrt{5}}{25} \right) \left(\frac{47 + 21\sqrt{5}}{2} \right)^n
$$

$$
+ \left(\frac{232 - 96\sqrt{5}}{25} \right) \left(\frac{47 - 21\sqrt{5}}{2} \right)^n + \frac{116}{5}, \quad n \geq 1
$$

Proof: Again equation (2) implies that

$$
\tau(A_n) = \tau(N_n) \times \tau(G_n) - \tau(G_n) \times \tau(O_n)
$$

with:

$$
\begin{align*}
\tau(N_n) &= 2\tau(G_n) - \tau(F_n)^2 \\
\tau(O_n) &= \tau(F_n)^2
\end{align*}
$$

then the result.
3.5 The complexity of light graph L_n

Results found previously allow us to calculate the number of spanning trees of light graph L_n: $n = \frac{|V_{L_n}| - 6}{6}$.

![Figure 10: a: Light graph L_n and b: the M_n graph](image)

Theorem 3.7 The number of spanning trees in L_n is given by the following formula:

$$
\tau(L_n) = 3\tau(G_n)^2 \left(\tau(G_n) - \tau(F_n)^2 \right)
$$

$$
= \left(\frac{5508 + 2484\sqrt{5}}{125} \right) \left(\frac{7 + 3\sqrt{5}}{2} \right) 2^n - \left(\frac{5508 - 2484\sqrt{5}}{125} \right) \left(\frac{7 - 3\sqrt{5}}{2} \right) 2^n
$$

$$
+ \left(\frac{1296 - 864\sqrt{5}}{125} \right) \left(\frac{3 - \sqrt{5}}{2} \right) 2^n + \left(\frac{12876 + 9504\sqrt{5}}{125} \right) \left(\frac{7 + 3\sqrt{5}}{2} \right) n
$$

$$
+ \left(\frac{2316 - 1728\sqrt{5}}{125} \right) \left(\frac{7 - 3\sqrt{5}}{2} \right)^n + \left(\frac{19488 + 8064\sqrt{5}}{125} \right) \left(\frac{47 + 21\sqrt{5}}{2} \right)^n
$$

$$
+ \left(\frac{19488 - 8064\sqrt{5}}{125} \right) \left(\frac{47 - 21\sqrt{5}}{2} \right)^n + \left(\frac{534 + 246\sqrt{5}}{25} \right) \left(\frac{161 + 72\sqrt{5}}{2} \right)^n
$$

$$
+ \left(\frac{534 - 246\sqrt{5}}{25} \right) \left(\frac{161 - 72\sqrt{5}}{2} \right)^n + \left(\frac{924 + 396\sqrt{5}}{125} \right) \left(\frac{7 + 3\sqrt{5}}{2} \right)^n \left(\frac{7 - 3\sqrt{5}}{2} \right)^n
$$

$$
+ \left(\frac{924 - 396\sqrt{5}}{125} \right) \left(\frac{7 - 3\sqrt{5}}{2} \right)^2 \left(\frac{7 + 3\sqrt{5}}{2} \right)^n + \frac{264}{5}, \ n \geq 1
$$

Proof: We cut L_n as shown in Figure 11.
The two subgraphs have vertices v_1 and v_2 in common, so using Theorem 2.2 we get

\[\tau(L_n) = \tau(M_n) \times \tau(H_n) + \tau(G_n) \times \tau(A_n) \]

with: \(\tau(M_n) = \tau(G_n)^2 \) from equation (1), and using Lemma 3.6 and 3.4 we obtain the result.

References

Received: December 15, 2013