A Buffon Type Problem for a Lattice with
Fundamental Cell Composed by Two Triangles
and Two Trapeziums

D. Barilla, A. Puglisi and E. Saitta

Department SEAM, University of Messina
Via dei Verid, 75, 98122 Messina, Italy

Dedicated to Professor Marius Stoka on the occasion of his 80th birthday

Copyright © 2014 D. Barilla, A. Puglisi and E. Saitta. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Abstract

In some previous papers [1], [2], [3], [4], [5], [6], [7], [8], [9] and
[10] the authors studies same Buffon - Laplace problems with different
fundamental cells. In this paper we compute the probability that a
segment of constant length and random position intersects a side of
lattice with the cell composed by two triangles and two trapeziums (fig. 1).

Mathematics Subject Classification: primary: 30C45, 30C80, secondary: 30D

Keywords: Geometric Probability, stochastic geometry, random sets, random convex sets and integral geometry

Let \(\mathbb{R} (a, b; \lambda; \alpha) \) the lattice with the fundamental cell

\[
C_0 = C_{01} \cup C_{02} \cup C_{03} \cup C_{04}
\]
where

\[0 < \lambda \leq \frac{1}{2}, \quad 0 < \beta \leq \alpha \leq \frac{\pi}{4}\].

By this figure are the follows relations

\[|AE| = |BF| = \frac{\lambda \alpha}{\cos \alpha}, \quad |CF| = |DE| = \frac{(1 - \lambda) \alpha}{\cos \beta},\]

\[|EF| = b - 2\lambda \alpha \tan \alpha,\]

\[\lambda \tan \alpha = (1 - \lambda) \tan \beta\] (1)

with

\[\lambda \tan \alpha = (1 - \lambda) \tan \beta\] (2)

All the same we have that

\[\text{area} C_{01} = (b - \lambda \alpha \tan \alpha) \lambda \alpha, \quad \text{area} C_{02} = (b - \lambda \alpha \tan \alpha)(1 - \lambda) \alpha,\]

\[\text{area} C_{03} = \text{area} C_{04} = \frac{\lambda \alpha^2}{2} \tan \alpha.\]

We want to compute the probability that a segment \(s\) of random position and constant length \(l < \min \left(\frac{b}{2}, \frac{\lambda \alpha}{2 \cos \alpha}\right)\) intersects a side of the lattice \(\mathbb{R}\), i.e. the probability \(P_{\text{int}}\) that \(s\) intersects a side of the fundamental cell \(C_0\).

The position of the segment \(s\) is determinated by middle point and by the angle that it formed with line \(BC\).

In order to compute \(P_{\text{int}}\) we consider the limit positions of segment \(s\), for a fixed value of \(\varphi\), in the cell \(C_{0i}\), \((i = 1, 2, 3, 4)\).

We have the fig. 2
A Buffon type problem two triangles and two trapeziums

\[a \quad b \quad \lambda a \quad (1-\lambda)a \]

\[\begin{align*}
\text{area} \hat{C}_{01} (\varphi) &= \text{area} C_{01} - \sum_{i=1}^{6} \text{area} a_i (\varphi), \\
\text{area} \hat{C}_{02} (\varphi) &= \text{area} C_{02} - \sum_{i=1}^{6} \text{area} b_i (\varphi), \\
\text{area} \hat{C}_{03} (\varphi) &= \text{area} C_{03} - \sum_{i=1}^{5} \text{area} c_i (\varphi), \\
\text{area} \hat{C}_{04} (\varphi) &= \text{area} C_{04} - \sum_{i=1}^{5} \text{area} d_i (\varphi).
\end{align*} \]

Considering fig.1 we have

\[\begin{align*}
\text{aread}_1 (\varphi) &= \frac{l^2 \sin \varphi \sin (\varphi + \beta)}{2 \sin \beta}, \\
\text{aread}_4 (\varphi) &= \frac{l^2 \sin \varphi \sin (\varphi - \alpha)}{2 \sin \alpha}, \\
\text{aread}_5 (\varphi) &= \frac{\alpha l}{2} \sin \varphi - \frac{l^2 \cot \alpha}{4\lambda} (1 - \cos 2\varphi), \\
\text{aread}_3 (\varphi) &= \left(\frac{\lambda \alpha}{\cos \alpha} - \frac{l \sin \varphi}{\sin \alpha} \right) \frac{l}{2} \sin (\varphi - \alpha), \\
\text{aread}_2 (\varphi) &= \left[\frac{(1-\lambda) \alpha}{\cos \beta} - \frac{l \sin \varphi}{\sin \beta} \right] l \sin (\varphi + \beta).
\end{align*} \]

The formulas (7), (8), (9), (10), (11) and (12) give us
\[\text{area}\hat{C}_{04}(\varphi) = \text{area}C_{04}(\varphi) - \]

\[
\frac{l}{2} \left[\frac{(1 - \lambda)a}{\cos \beta} \sin(x + \beta) + \frac{\lambda a}{\cos \alpha} \sin(\varphi - \alpha) + \left(\alpha - \frac{l \tan \alpha}{\lambda}\right) \sin \varphi \right]. \tag{13}
\]

In the same way

\[\text{area}_{a4}(\varphi) = \frac{l^2 \cos \varphi \sin(\varphi - \alpha)}{2 \cos \alpha}, \tag{14} \]

\[\text{area}_{a3}(\varphi) = \left(\frac{\lambda \alpha}{\cos \alpha} - \frac{l \cos \varphi}{\cos \alpha}\right) \frac{l}{2} \sin(\varphi - \alpha), \tag{15} \]

\[\text{area}_{a1}(\varphi) = \frac{l^2 \cos \varphi \sin(\varphi + \alpha)}{2 \cos \alpha}, \tag{16} \]

\[\text{area}_{a5}(\varphi) = \left[b - 2 \lambda \alpha \tan \alpha - \frac{l \sin(\varphi - \alpha)}{\cos \alpha}\right] \frac{l}{2} \cos \varphi, \tag{17} \]

\[\text{area}_{a6}(\varphi) = \left(\frac{\lambda \alpha}{\cos \alpha} - \frac{l \cos \varphi}{\cos \alpha}\right) \frac{l}{2} \sin(\varphi + \alpha), \tag{18} \]

\[\text{area}_{a2}(\varphi) = \left[b - \frac{l \sin(\varphi + \alpha)}{\cos \alpha}\right] \frac{l}{2} \cos \varphi, \tag{19} \]

Replacing in the (4) the formulas (14), (15), (16), (17), (18) and (25) we have

\[\text{area}\hat{C}_{01}(\varphi) = \text{area}C_{01} - \]

\[\left[\lambda al \sin \varphi + (b - \lambda \alpha \tan \alpha) l \cos \varphi - \frac{l^2}{2} \sin 2\varphi \right]. \tag{20} \]

Considering fig. 1

\[\text{area}_{c1}(\varphi) = \frac{l^2 \sin \varphi \sin(\varphi + \alpha)}{2 \sin \alpha}, \tag{21} \]

\[\text{area}_{c4}(\varphi) = \frac{l^2 \sin \varphi \sin(\varphi - \beta)}{2 \sin \beta}, \tag{22} \]

\[\text{area}_{c5}(\varphi) = \left[a - \frac{l \sin(\varphi - \alpha)}{\sin \alpha}\right] - \frac{l \sin(\varphi - \beta)}{\sin \beta} \frac{l}{2} \sin \varphi, \tag{23} \]

\[\text{area}_{c2}(\varphi) = \left(\frac{\lambda \alpha}{\cos \alpha} - \frac{l \sin \varphi}{\sin \alpha}\right) \frac{l}{2} \sin(\varphi + \alpha), \tag{24} \]
A Buffon type problem two triangles and two trapeziums

area_{C_3}(\varphi) = \left[\frac{(1 - \lambda) a}{\cos \beta} - \frac{l \sin \varphi}{\sin \beta} \right] \frac{l}{2} \sin (\varphi - \beta). \quad (25)

Replacing in the (6) the relations (21), (22), (23), (24) and (25) we obtain

area\hat{C}_{03}(\varphi) = areaC_{03} - \left\{ \frac{al}{2} \sin \varphi + \left(\frac{\lambda a}{\cos \alpha} - \frac{l \sin \varphi}{\sin \alpha} \right) \right\} \frac{l}{2} \sin (\varphi - \beta). \quad (26)

In the same way

area_{b_1}(\varphi) = \frac{l^2 \cos \varphi \sin (\varphi - \beta)}{2 \cos \beta}, \quad (27)

area_{b_2}(\varphi) = \left[b - 2\lambda \tan \alpha - \frac{l \sin (\varphi - \beta)}{\cos \beta} \right] \frac{l}{2} \cos \varphi, \quad (28)

area_{b_6}(\varphi) = \left[\frac{(1 - \lambda) a}{\cos \beta} - \frac{l \cos \varphi}{\cos \beta} \right] \frac{l}{2} \sin (\varphi - \beta) - \frac{l^2 \cos \varphi \sin (\varphi - \beta)}{2 \cos \beta}, \quad (29)

area_{b_4}(\varphi) = \frac{l^2 \cos \varphi \sin (\varphi + \beta)}{2 \cos \beta}, \quad (30)

area_{b_3}(\varphi) = \left[\frac{(1 - \lambda) a}{\cos \beta} - \frac{l \cos \varphi}{\cos \beta} \right] \frac{l}{2} \sin (\varphi + \beta), \quad (31)

area_{b_5}(\varphi) = \frac{bl}{2} \cos \varphi - \frac{l^2 \cos \varphi (\varphi + \beta)}{2 \cos \beta}. \quad (32)

Replacing in the (5) the relations (27), (28), (29), (30), (31) and (32) we have that

area\hat{C}_{02}(\varphi) = areaC_{02} \left[(b - 2\lambda \tan \alpha) \frac{l}{2} \cos \varphi + \right.

\left(\frac{(1 - \lambda) a}{\cos \beta} \right) \frac{l}{2} \sin (\varphi + \beta) - \frac{bl}{2} \cos \varphi +

\left(\frac{(1 - \lambda) a}{\cos \beta} \right) \frac{l}{2} \sin (\varphi - \beta) - \frac{l^2}{2} \sin 2\varphi \right]. \quad (33)

Denoting with \(M_i\) \((i = 1, 2, 3, 4)\), the set of the segment \(s\) that have the middle point in the cell \(C_{01}\) and with \(N_i\) the set of the segment \(s\) completely in \(C_{0i}\) we have \([12]\)
\[P_{\text{int}} = 1 - \frac{\sum_{i=1}^{4} \mu (N_i)}{\sum_{i=1}^{4} \mu (M_i)} \] \hspace{1cm} (34)

where \(\mu \) is the Lebesgue measure in the euclidean plane.

To compute the measure \(\mu (M_i) \) and \(\mu (N_i) \) we use the kinematic measure of Poincaré [11]:

\[dk = dx \wedge d\gamma \wedge d\varphi, \]

where \(x, y \) are the coordinate of middle point of segment \(s \) and \(\varphi \) the fixed angle.

We can write

\[\mu (M_i) = \int_{\alpha}^{\pi/2} dy \int_{\{(x,y) \in C_{0i}\}} dx dy = \]

\[\int_{0}^{\pi/2} (\text{area} C_{0i}) dy = \left(\frac{\pi}{2} - \alpha \right) C_{0i}, \quad (i = 1, 2, 3, 4). \]

then

\[\sum_{i=1}^{4} \mu (M_i) = \left(\frac{\pi}{2} - \alpha \right) \text{area} C_{0}. \] \hspace{1cm} (35)

All the same we have that

\[\mu (N_i) = \int_{\alpha}^{\pi/2} d\varphi \int_{\{(x,y) \in C_{0i}(\varphi)\}} dx d\gamma = \int_{\alpha}^{\pi/2} \left[\text{area} \hat{C}_{0i}(\varphi) \right] dy, \]

then

\[\sum_{i=1}^{4} \mu (N_i) = \left(\frac{\pi}{2} - \alpha \right) \text{area} C_{0} - \]

\[\{ \alpha l [(3 - \lambda) \cos \alpha - 2\lambda t g \alpha (1 - \sin \alpha)] + 2bl (1 - \cos \alpha) - \]

\[\frac{l^2}{2} \left[1 + 2 \cos 2\alpha + \frac{1}{2(1 - \lambda)} \cot \alpha (\sin 2\alpha + \pi - 2\alpha) \right] \} . \] \hspace{1cm} (36)

By formulas (53), (54) and (56) we have that

\[P_{\text{int}} = \frac{2}{(\pi - 2\alpha)\alpha b} \{[(3 - \lambda) \cos \alpha - 2\lambda t g \alpha (1 - \sin \alpha)] \]
A Buffon type problem two triangles and two trapeziums

\[\alpha l + 2 (1 - \cos \alpha) bl - \frac{l^2}{4} \left[2 \cos 2\alpha + \frac{2 \cos^2 \alpha}{\lambda} + \frac{(\pi - 2\alpha) \cot \alpha}{\lambda} \right] \]. \quad (37)

In particular for \(\lambda = 1/2 \) and \(\alpha = \pi/4 \) the probability (57) can be write

\[P = \frac{4}{\pi \alpha b} \left[\left(\frac{7 \sqrt{2}}{4} - 1 \right) \alpha l + \left(2 - \sqrt{2} \right) bl - \frac{l^2}{4} (2 + \pi) \right] . \]

At the end, for \(a = b \) this probability become

\[P = \frac{3 \sqrt{2} + 4}{\pi} \frac{l}{\alpha} - \frac{2 + \pi}{\pi} \cdot \left(\frac{l}{2} \right)^2 . \]

References

Received: September 1, 2014; Published: November 25, 2014