Domination Number of the Acquaint Vertex Gluing of Graphs

Michael Magbanua Bacolod

College of Arts and Sciences
Central Philippines State University, Philippines

Michael P. Baldado Jr.

Mathematics Department
Negros Oriental State University, Philippines

Copyright © 2014 Michael Magbanua Bacolod and Michael P. Baldado Jr. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $G = (V, E)$ be a graph. A set $S \subseteq V$ is a dominating set of G if for every $x \in V \setminus S$, there exists $y \in S$ such that $xy \in E$.

In this paper, we introduced a new binary graph operation which we call acquaint vertex gluing. Moreover, we gave the domination number of the acquaint vertex gluing of some graphs.

Mathematics Subject Classification: 05C12

Keyword: dominating set, acquaint vertex gluing

1 Introduction

This paper would like to determine the domination number some graphs resulting from the acquaint vertex gluing of paths, cycles, complete graphs and wheels.

1 This research is supported by Central Philippines State University, Philippines.
2 Corresponding author
The path $P_n = (v_1, v_2, \ldots, v_n)$ is the graph with distinct vertices v_1, v_2, \ldots, v_n and edges $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n$. The cycle $C_n = [v_1, v_2, \ldots, v_n]$, $n \geq 3$, is the graph with vertices v_1, v_2, \ldots, v_n and edges $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1$. A complete graph of order n, denoted by K_n, is the graph in which every pair of distinct vertices are adjacent.

Let X and Y be sets. The disjoint union of X and Y, denoted by $X \cup Y$, is found by combining the elements of X and Y, treating all elements to be distinct. Thus, $|X \cup Y| = |X| + |Y|$. The join of two graphs G and H, denoted by $G + H$, is the graph with vertex-set $V(G + H) = V(G) \cup V(H)$ and edge-set $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$. The wheel W_n is the join of $K_1 = (\{v\}, \emptyset)$ and C_n, that is, $W_n = K_1 + C_n$.

Let $G = (V, E)$ be a graph and $S \subseteq V$. The open neighborhood of S, denoted by $N(S)$, is consists of all vertices $y \in V$ which are adjacent to some element $x \in S$. Let $G = (V, E)$ be a graph. A set $S \subseteq V$ is a dominating set of G if for every $x \in V \setminus S$, there exists $y \in S$ such that $xy \in E$, that is, $N_G[S] = S \cup N_G(S) = V$. The domination number of G, denoted by $\gamma(G)$, is the cardinality of a minimum dominating set.

![Figure 1: A graph G](image)

Consider the graph G in Figure 1 and let $S = \{a, d\}$. Then $N(a) = \{b, d\}$ and $N(d) = \{a, b, c, e\}$. Hence, $N(S) = N(a) \cup N(d) = \{b, d\} \cup \{a, b, c, e\} = \{a, b, c, d, e\}$. Thus, $N[S] = S \cup N(S) = \{a, d\} \cup \{a, b, c, d, e\} = \{a, b, c, d, e\} = V(G)$. Therefore, S is a dominating set of G. Similarly, $S' = \{d\}$ is a dominating set. Clearly, S' is a minimum dominating set. So, $\gamma(G) = 1$.

Definition 1.1 Let $m, n \in \mathbb{N}$ and $P_n = (1, 2, \ldots, n)$ be a path of order n. Let

$$P_n^{(1)} = \left(1^{(1)}, 2^{(1)}, \ldots, n^{(1)}\right)$$

$$P_n^{(2)} = \left(1^{(2)}, 2^{(2)}, \ldots, n^{(2)}\right)$$

$$\vdots$$

$$P_n^{(m)} = \left(1^{(m)}, 2^{(m)}, \ldots, n^{(m)}\right).$$

be the m copies of P_n with $m \geq 3$. The acquaint vertex gluing of the m copies of P_n, denoted by mP_n, is the graph obtained by identifying the vertices, $1^{(1)}$,
1\(^{(2)}\), ..., 1\(^{(m)}\), and connecting by an edge the vertices,

\[n^{(1)} \text{ and } n^{(2)} \]
\[n^{(2)} \text{ and } n^{(3)} \]
\[\vdots \]
\[n^{(m-1)} \text{ and } n^{(m)} \]
\[n^{(m)} \text{ and } n^{(1)} \].

Definition 1.2 Let \(m, n \in \mathbb{N} \) and \(C_n = [1, 2, \ldots, n] \) be a cycle of order \(n \). Let

\[C_n^{(1)} = [1^{(1)}, 2^{(1)}, \ldots, n^{(1)}] \]
\[C_n^{(2)} = [1^{(2)}, 2^{(2)}, \ldots, n^{(2)}] \]
\[\vdots \]
\[C_n^{(m)} = [1^{(m)}, 2^{(m)}, \ldots, n^{(m)}] \]

be the \(m \) copies of \(C_n \) with \(m \geq 3 \). The *acquaint vertex gluing* of the \(m \) copies of \(C_n \), denoted by \(mC_n \), is the graph obtained by identifying the vertices, \(1^{(1)}, 1^{(2)}, \ldots, 1^{(m)} \) and connecting by an edge the vertices,

\[\left(\frac{n + 2}{2} \right)^{(1)} \text{ and } \left(\frac{n + 2}{2} \right)^{(2)} \]
\[\left(\frac{n + 2}{2} \right)^{(2)} \text{ and } \left(\frac{n + 2}{2} \right)^{(3)} \]
\[\vdots \]
\[\left(\frac{n + 2}{2} \right)^{(m-1)} \text{ and } \left(\frac{n + 2}{2} \right)^{(m)} \]
\[\left(\frac{n + 2}{2} \right)^{(m)} \text{ and } \left(\frac{n + 2}{2} \right)^{(1)} \].

if \(n \) is even, while we connect by an edge the vertices,

\[\left\lfloor \frac{n}{2} \right\rfloor^{(1)} \text{ and } \left\lfloor \frac{n + 2}{2} \right\rfloor^{(2)} \]
\[\left\lfloor \frac{n}{2} \right\rfloor^{(2)} \text{ and } \left\lfloor \frac{n + 2}{2} \right\rfloor^{(3)} \]
\[\vdots \]
\[\left\lfloor \frac{n}{2} \right\rfloor^{(m-1)} \text{ and } \left\lfloor \frac{n + 2}{2} \right\rfloor^{(m)} \]
\[\left\lfloor \frac{n}{2} \right\rfloor^{(m)} \text{ and } \left\lfloor \frac{n + 2}{2} \right\rfloor^{(1)} \].

if \(n \) is odd.
Definition 1.3 Let \(m, n \in \mathbb{N} \) with \(m \geq 3 \), and let \(K_n^{(1)}, K_n^{(2)}, \ldots, K_n^{(m)} \). Let \(u^{(i)}, v^{(i)} \in K_n^{(i)} \) with \(u^{(i)} \neq v^{(i)}, i = 1, 2, 3, \ldots, m \). The **acquaint vertex gluing** of \(m \) copies of \(K_n \), denoted by \(mK_n \), is the graph obtained by identifying the vertices \(u_i, i = 1, 2, 3, \ldots, m \) and connecting by an edge the pair of vertices

\[
\begin{align*}
v^{(1)} \text{ and } v^{(2)} \\
v^{(2)} \text{ and } v^{(3)} \\
\vdots \\
v^{(m-1)} \text{ and } v^{(m)} \\
v^{(m)} \text{ and } v^{(1)}.
\end{align*}
\]

Definition 1.4 Let \(m, n \in \mathbb{N} \) with \(m \geq 3 \) and \(W_n = K_1 + [1, 2, \ldots, n] \) be a wheel of order \(n + 1 \). Let

\[
\begin{align*}
W_n^{(1)} &= K_1^{(1)} + [1^{(1)}, 2^{(1)}, \ldots, n^{(1)}] \\
W_n^{(2)} &= K_1^{(2)} + [1^{(2)}, 2^{(2)}, \ldots, n^{(2)}] \\
&\vdots \\
W_n^{(m)} &= K_1^{(m)} + [1^{(m)}, 2^{(m)}, \ldots, n^{(m)}].
\end{align*}
\]

be the \(m \) copies of \(W_n \). The **acquaint vertex gluing** of the \(m \) copies of \(W_n \), denoted by \(mW_n \), is the graph obtained by identifying the vertices, \(1^{(1)}, 1^{(2)}, \ldots, 1^{(m)} \) and connecting by an edge the pair of vertices

\[
\begin{align*}
\left(\frac{n + 2}{2} \right)^{(1)} \text{ and } \left(\frac{n + 2}{2} \right)^{(2)} \\
\left(\frac{n + 2}{2} \right)^{(2)} \text{ and } \left(\frac{n + 2}{2} \right)^{(3)} \\
&\vdots \\
\left(\frac{n + 2}{2} \right)^{(m-1)} \text{ and } \left(\frac{n + 2}{2} \right)^{(m)} \\
\left(\frac{n + 2}{2} \right)^{(m)} \text{ and } \left(\frac{n + 2}{2} \right)^{(1)}.
\end{align*}
\]
if n is even, while we connect by an edge the vertices,
\[
\begin{align*}
\left\lceil \frac{n}{2} \right\rceil & \text{ and } \left\lceil \frac{n+2}{2} \right\rceil^{(2)} \\
\left\lceil \frac{n}{2} \right\rceil & \text{ and } \left\lceil \frac{n+2}{2} \right\rceil^{(3)} \\
& \quad \vdots \phantom{\text{ and } \left\lceil \frac{n+2}{2} \right\rceil^{(3)}} \\
\left\lceil \frac{n}{2} \right\rceil & \text{ and } \left\lceil \frac{n+2}{2} \right\rceil^{(m)} \\
\left\lfloor \frac{n}{2} \right\rfloor & \text{ and } \left\lfloor \frac{n+2}{2} \right\rfloor^{(1)}.
\end{align*}
\]
if n is odd.

As found in [1], the Pigeon-hole Principle states that if k and n be any two positive integers and if at least $kn+1$ objects are distributed among n boxes, then one of the boxes must contain at least $k+1$ objects. In particular, if at most $n-1$ objects are to be put into n boxes, then one of the boxes is empty.

For the notations and concepts in the succeeding sections which are not discussed above, please refer to [2] and [3].

The following sections present the main results of this study.

2 Domination Number of the Acquaint Vertex Gluing of Path

Theorem 2.1 Let $r, k \in \mathbb{N}$. Then $\delta_{(3^r P_{3k})} = 3rk - 2r + 1$.

Proof: Let $P_{3k} = (1, 2, \ldots, 3k)$ and the $P_{3k}^{(1)} = (1^{(1)}, 2^{(1)}, \ldots, 3k^{(1)}),$ $P_{3k}^{(2)} = (1^{(2)}, 2^{(2)}, \ldots, 3k^{(2)}), \ldots,$ $P_{3k}^{(3r)} = (1^{(3r)}, 2^{(3r)}, \ldots, 3k^{(3r)}),$ be the m copies of P_{3k}. Form $3^r P_{3k}$ by identifying vertices $1^{(1)}, 1^{(2)}, \ldots, 1^{(3r)}$. Consider $S = \{1^{(1)}, 4^{(1)}, 4^{(2)}, \ldots, 4^{(3r)}, 7^{(1)}, 7^{(2)}, \ldots, 7^{(3r)}, \ldots, (3k-2)^{(1)}, (3k-2)^{(2)}, \ldots, (3k-2)^{(3r)}, (3k)^{(1)}, (3k)^{(2)}, (3k)^{(3)}, \ldots, (3k)^{(3r-2)}\}$.

Note that $N \left[1^{(1)} \right] = \{1^{(1)}, 2^{(1)}, 2^{(2)}, 2^{(3)}, \ldots, 2^{(3r)} \}$, $N \left[4^{(1)} \right] = \{3^{(1)}, 4^{(1)}, 5^{(1)} \}$, $N \left[4^{(2)} \right] = \{3^{(2)}, 4^{(2)}, 5^{(2)} \}, \ldots$, $N \left[4^{(3r)} \right] = \{3^{(3r)}, 4^{(3r)}, 5^{(3r)} \}$, $N \left[7^{(1)} \right] = \{6^{(1)}, 7^{(1)}, 8^{(1)} \}$, $N \left[7^{(2)} \right] = \{6^{(2)}, 7^{(2)}, 8^{(2)} \}, \ldots$, $N \left[7^{(3r)} \right] = \{6^{(3r)}, 7^{(3r)}, 8^{(3r)} \}$, \ldots, $N \left[(3k-2)^{(1)} \right] = \{(3k-2)^{(1)}, (3k-2)^{(1)}, (3k-1)^{(1)} \}$, $N \left[(3k-2)^{(2)} \right] = \{(3k-3)^{(2)}, (3k-2)^{(2)}, (3k-1)^{(2)} \}, \ldots$, $N \left[(3k-2)^{(3r)} \right] = \{(3k-3)^{(3r)}, (3k-2)^{(3r)}, (3k-1)^{(3r)} \}$, $N \left[(3k)^{(1)} \right] = \{(3k)^{(3r)}, (3k)^{(1)}, (3k)^{(2)} \}$, $N \left[(3k)^{(4)} \right] = \ldots$
Let $m, n \in \mathbb{N}$. If $n \neq 3k$ for any $k \in \mathbb{N}$, then $\delta(mP_n) = m \left\lceil \frac{n-2}{3} \right\rceil + 1$.

Proof: Let $P_n = (1, 2, \ldots, n)$ and the $P_n^{(1)} = (1^{(1)}, 2^{(1)}, \ldots, n^{(1)})$, $P_n^{(2)} = (1^{(2)}, 2^{(2)}, \ldots, n^{(2)})$, ..., $P_n^{(m)} = (1^{(m)}, 2^{(m)}, \ldots, n^{(m)})$ be the m-copies of P_n.

Form mP_n by identifying vertices $1^{(1)}, 1^{(2)}, \ldots, 1^{(m)}$.

If $m \equiv 2 \pmod{3}$, then $S = \{1^{(1)}, 4^{(1)}, 4^{(2)}, \ldots, 4^{(m)}, 7^{(1)}, 7^{(2)}, \ldots, 7^{(m)}, \ldots, (n-1)^{(1)}, (n-1)^{(2)}, \ldots, (n-1)^{(m)} \}$ is a dominating set.

To see this, we note that $N(1^{(1)}) = \{2^{(1)}, 2^{(2)}, 2^{(3)}, \ldots, 2^{(m)} \}$, $N(4^{(1)}) = \{3^{(1)}, 5^{(1)} \}$, $N(4^{(2)}) = \{3^{(2)}, 5^{(2)} \}$, ..., $N(4^{(m)}) = \{3^{(m)}, 5^{(m)} \}$, $N(7^{(1)}) = \{6^{(1)}, 8^{(1)} \}$, $N(7^{(2)}) = \{6^{(2)}, 8^{(2)} \}$, ..., $N(7^{(m)}) = \{6^{(m)}, 8^{(m)} \}$, ..., $N((n-1)^{(1)}) = \{(n-2)^{(1)}, n^{(1)} \}$, $N((n-1)^{(2)}) = \{(n-2)^{(2)}, n^{(2)} \}$, ..., $N((n-1)^{(m)}) = \{(n-2)^{(m)}, n^{(m)} \}$.

Thus, $N[S] = N(S) \cup S = \{2^{(1)}, 2^{(2)}, 2^{(3)}, \ldots, 2^{(m)}, 3^{(1)}, 5^{(1)}, 3^{(2)}, 5^{(2)}, \ldots, 3^{(m)}, 5^{(m)}\}, \{6^{(1)}, 8^{(1)}\}, \{6^{(2)}, 8^{(2)}\}, \ldots, \{6^{(m)}, 8^{(m)}\}, \{(n-2)^{(1)}, n^{(1)}\}, \{(n-2)^{(2)}, n^{(2)}\}, \ldots, \{(n-2)^{(m)}, (n-1)^{(m)}\}$ of $V(mP_n)$. If $\delta(mP_n) < m \left\lceil \frac{n-2}{3} \right\rceil + 1$ and S'
is a dominating set with $|S'| = \delta(mP_n)$, then by the Pigeon-hole Principle at least one element of the partition will not contain an element of S'. This is a contradiction since S' is a dominating set. Therefore, $\delta(mP_n) = m \left\lceil \frac{n-2}{3} \right\rceil + 1$.

Similarly, if $m \equiv 1 \pmod{3}$, then $S = \{1^{(1)}, 4^{(1)}, 4^{(2)}, \ldots, 4^{(m)}, 7^{(1)}, 7^{(2)}, \ldots, 7^{(m)}, \ldots, (n-1)^{(1)}, (n-1)^{(2)}, \ldots, (n-1)^{(m)}\}$ is a minimum dominating set. Note that $|S| = m \left\lceil \frac{n-2}{3} \right\rceil + 1$. Therefore, $\delta(mP_n) = m \left\lceil \frac{n-2}{3} \right\rceil + 1$. □

Theorem 2.3 Let $m, k \in \mathbb{N}$. If $m \neq 3k$ for any $k \in \mathbb{N}$ and $3 \mid \left\lceil \frac{n}{2} \right\rceil$, then $\delta(mP_{3k}) = \left\lceil \frac{m}{3} \right\rceil + m(k - 1) + 1$.

3 Domination Number of the Acquaint Vertex

Gluing of Complete Graphs

Theorem 3.1 Let $m, n \in \mathbb{N}$ with $m \geq 3$ and $n \geq 2$. Then $\delta(mK_n) = 1$.

Proof: Let K_n be a complete graph of order n. Let $u \in V(mK_n)$ with $\deg_{mK_n}(u) = mn$, then $S = \{u\}$ is a dominating set in mK_n. Hence, $\delta(mK_n) \leq 1$. Since $\delta(mK_n) \geq 1$, we must have $\delta(mK_n) = 1$. □

4 Domination Number of the Acquaint Vertex

Gluing of Cycles

Corollary 4.1 Let $m, n \in \mathbb{N}$ with $m \geq 3$. If n is odd, then

$$\delta(mC_n) = \begin{cases}
2m \left\lceil \frac{n}{3} \right\rceil - \frac{4m}{3} + 1, & \text{if } 3 \mid 2m \text{ and } 3 \mid \left\lceil \frac{n}{2} \right\rceil \\
2m \left\lceil \frac{n}{3} - 2 \right\rceil + 1, & \text{if } 3 \nmid \left\lceil \frac{n}{2} \right\rceil \\
\left\lceil \frac{2m}{3} \right\rceil + \frac{2m}{3} - 2m + 1, & \text{if } 3 \nmid 2m \text{ and } 3 \mid \left\lceil \frac{n}{2} \right\rceil.
\end{cases}$$

Proof: Since $mC_n \cong 2mP_{\left\lceil \frac{n}{2} \right\rceil}$, the result follows from Theorems 2.1, 2.2 and 2.3. □

Theorem 4.2 Let $m, k \in \mathbb{Z}$. Then

1. $\delta(mC_{6k}) = 2mk - m + 1$;
2. If $k \equiv 2 \pmod{3}$, then $\delta(3mC_{2k}) = 2mk - 3m + 1$.

5 Domination Number of the Acquaint Vertex Gluing of Wheels

Theorem 5.1 Let $m, n \in \mathbb{N}$ with $m \geq 3$, then $\delta(mW_n) = m$.

Proof: Let $W_n = (\{u\}, \emptyset) + [1, 2, \ldots, n]$ a wheel of order $n+1$. Let the following be m copies of W_n.

\[W_n^{(1)} = (\{u^{(1)}\}, \emptyset) + [1^{(1)}, 2^{(1)}, \ldots, n^{(1)}] \]
\[W_n^{(2)} = (\{u^{(2)}\}, \emptyset) + [1^{(2)}, 2^{(2)}, \ldots, n^{(2)}] \]
\[\vdots \]
\[W_n^{(m)} = (\{u^{(m)}\}, \emptyset) + [1^{(m)}, 2^{(m)}, \ldots, n^{(m)}] \]

Form mW_n by identifying vertices $1^{(1)}, 1^{(2)}, \ldots, 1^{(m)}$. Let $S = \{u^{(1)}, u^{(2)}, \ldots, u^{(m)}\}$. Then clearly S is a dominating set in mW_n. Hence, $\delta(mW_n) \leq m$.

Suppose $\delta(mW_n) < m$. Let $S = \{v_1, v_2, v_3, \ldots, v_k\}$ with $k < m$ be a dominating set in mW_n. Let $v = 1^{(1)}$ and consider the following cases.

Case 1. $v \in S$

If $v \in S$, then $v = v_i$ for some $i \in \{1, 2, \ldots, k\}$. Thus, there will be only $k - 1$ guards for the other vertices. Since $k < m$, it follows that $k - 1 < m$. Hence by Pigeonhole Principle, there exists a copy of W_n, say $W_n^{(j)}$, such that $S \cap (V(W_n^{(j)}) \setminus \{v\}) = \emptyset$. Thus, $3^{(j)} \notin N[S]$. This is a contradiction since S is a dominating set.

Case 2. $v \notin S$

If $v \notin S$ and $k < m$, then by Pigeonhole Principle, there exists a copy of W_n, say $W_n^{(j)}$, such that $S \cap V(W_n^{(j)}) = \emptyset$. Hence, $3^{(j)} \notin N[S]$. This is a contradiction since S is a dominating set.

Accordingly, $\delta(mW_n) = m$. \hfill \Box

References

Received: September 15, 2014; Published: November 19, 2014