Tree Cover of Graphs

Rosalio G. Artes, Jr. and Rene D. Dignos

Department of Mathematics and Statistics
College of Science and Mathematics, MSU - Iligan Institute of Technology
Andres Bonifacio Avenue, Tibanga, 9200 Iligan City, Philippines

Copyright © 2014 Rosalio G. Artes, Jr. and Rene D. Dignos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let G be a graph and $\mathcal{F}_G = \{G_1, G_2, G_3, \ldots, G_n\}$ be a collection of subgraphs of G where G_i is a tree for all $i = 1, 2, \ldots, n$. If for every edge $e \in E(G)$, there exists $G_i \in \mathcal{F}_G$ such that $e \in E(G_i)$, then \mathcal{F}_G is a tree cover of G. The tree covering number of G is given by

$$t_c(G) = \min\{|\mathcal{F}_G| : \mathcal{F}_G \text{ is a tree cover of } G\}.$$

This paper characterizes graphs with tree covering number equal to some nonnegative integers in relation to the size and the order of the graph. Moreover, the tree coverings and the tree covering numbers of the cycle, fan, wheel, and a cyclic graph in general is obtained. We also introduced here a concept of cycle derivative and obtain results on the tree covering number with respect to this graph operation.

Mathematics Subject Classification: 05C30

Keywords: tree cover, tree covering number, cycle derivative, cyclic graph

1 Introduction

Let G be a graph. A tree of a graph G is a connected acyclic subgraph of G. A collection $\mathcal{F}_G = \{G_1, G_2, G_3, \ldots, G_n\}$ of subgraphs of G is a tree cover of G if G_i is a tree for all $i = 1, 2, \ldots, n$ and for every edge $e \in E(G)$, there exists
$G_i \in \mathcal{F}_G$ such that $e \in E(G_i)$. The tree covering number of G, denoted by $t_c(G)$, is given by

$$t_c(G) = \min\{|\mathcal{F}_G| : \mathcal{F}_G \text{ is a tree cover of } G\}.$$

We first introduce here the following definition of the join of graphs since the fan and the wheel are expressed as the join of graphs, to ease our approach in the proof of our results.

Definition 1.1 [4] Let G and H be vertex disjoint graphs. The *join* $G \oplus H$ of G and H has vertex-set $V(G \oplus H) = V(G) \cup V(H)$ and edge-set

$$E(G \oplus H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$$

The following section establishes some basic results and properties of tree covering of graphs. Some characterizations are also obtained here relating the size and the order of the graph.

2 Basic Results and Some Characterizations

We provide in this section some basic properties of the tree covering number of graphs and some characterizations of graphs with tree covering number equal to zero, tree covering number equal to one, and graphs with tree covering number equal to its size. Clearly, for any graph G, $t_c(G) \geq 0$.

The sharpness of this upper bound is established in the following theorem.

Theorem 2.1 Let G be a graph of order n. Then $t_c(G) = 0$ if and only if $G \cong K_n$.

Proof: Assume that $t_c(G) = 0$. Then $|E(G)| = 0$. Since $|V(G)| = n$, it follows that $G \cong K_n$.

Conversely, assume that $G \cong K_n$. By definition, $t_c(G) \leq 0$. Combining this with the inequality $t_c(G) \geq 0$, we have $t_c(G) = 0$. \[\square\]

The above theorem tells us that the tree covering number is a positive definite operator in graphs. Also, this asserts that if G is nonempty, then $t_c(G) \geq 1$.

The next result characterizes all nontrivial connected graphs with tree covering number equal to one.

Theorem 2.2 Let G be a nontrivial connected graph of order n. Then $t_c(G) = 1$ if and only if G is a tree.
Proof: Assume $t_c(G) = 1$. Then there exists a covering \mathcal{F}_G of G such that $|\mathcal{F}_G| = 1$. Let $\mathcal{F}_G = \{T\}$. Since G is connected and nontrivial, $G = T$. Thus, G is a tree.

Conversely, assume that G is a tree. Let $\mathcal{F}_G = \{G\}$. Then \mathcal{F}_G is a tree cover of G. By definition, $t_c(G) \leq |\mathcal{F}_G| = 1$. Since G is not the empty graph, a direct consequence of Theorem 2.1 asserts that $t_c(G) \geq 1$. Accordingly, $t_c(G) = 1$. \square

The following is a direct consequence of the above theorem.

Corollary 2.3 If G is a nontrivial connected acyclic graph, then $t_c(G) = 1$.

Corollary 2.4 For every positive number $n \geq 2$, the following hold:

1. $t_c(P_n) = 1$
2. $t_c(T_n) = 1$
3. $t_c(S_n) = t_c(K_{1,n}) = 1$.

Proof: Since T_n, P_n, and S_n for $n \geq 2$ are nontrivial connected acyclic graphs, then the results follow from the preceding corollary. \square

The following result characterizes all nontrivial connected graphs with tree covering number equal to its size.

Theorem 2.5 Let G be a nontrivial connected graph of order $n \geq 2$. Then, $t_c(G) = |E(G)|$ if and only if $G \cong K_2$.

Proof: Assume that $t_c(G) = |E(G)|$. Since G is connected, $|V(G)| = 2$. Accordingly, $G \cong K_2$.

Conversely, assume that $G \cong K_2$. Then $t_c(G) = t_c(K_2) = 1$, by Theorem 2.2. Since $|E(G)| = 1$, we must have $t_c(G) = |E(G)|$. \square

The next section investigates the tree covering and the tree covering number of cycles, fans, and wheels.

3 Tree Cover of Cycles, Fans, and Wheels

We establish the tree covering number of the cycle in the following theorem.

Theorem 3.1 For every positive integer $n \geq 3$, $t_c(C_n) = 2$.
Proof: The contrapositive of the implication in Theorem 2.2 asserts that \(t_c(C_n) \geq 2 \). Consider the cycle \(C_n = [u_1, u_2, u_3, \ldots, u_n, u_1] \). Let \(F = \{G_1, G_2\} \), where \(G_1 = [u_1, u_2, u_3, \ldots, u_n] \) and \(G_2 = [u_n, u_1] \). Then \(G_1 \) and \(G_2 \) are trees. Hence, \(F \) is a tree cover of \(C_n \). Thus, \(t_c(C_n) \leq |F| = 2 \). Accordingly, \(t_c(C_n) = 2 \).

The tree covering number of the fan is established in the following theorem.

Theorem 3.2 For every positive integer \(n \geq 2 \), \(t_c(F_n) = 2 \).

Proof: For \(n \geq 2 \), \(t_c(F_n) \geq 2 \), by Theorem 2.2. Note that by definition, \(F_n = P_n + K_1 \). Let \(P_n = [u_1, u_2, \ldots, u_n] \) and \(V(K_1) = \{v\} \). Then \(vu_i \in E(F_n) \) for all \(i = 1, 2, 3, \ldots, n \). Consider \(F = \{G_1, G_2\} \), where \(G_1 = P_n \) and \(G_2 \) is the star \(K_{1,n} = \{v\} \oplus K_n \) with \(V(K_n) = \{u_1, u_2, \ldots, u_n\} \). Then \(G_1 \) and \(G_2 \) are trees. Moreover, \(F \) is a tree cover of \(F_n \). Thus, \(t_c(F_n) \leq |F| = 2 \). Accordingly, \(t_c(F_n) = 2 \).

Next, we establish the tree covering number of the wheel \(W_n \).

Theorem 3.3 For every positive integer \(n \geq 3 \), \(t_c(W_n) = 2 \).

Proof: By Theorem 2.2, \(t_c(W_n) \geq 2 \). By definition, \(W_n = C_n + K_1 \). Let \(C_n = [u_1, u_2, u_3, \ldots, u_n, u_1] \) and \(V(K_1) = \{v\} \). Then \(vu_i \in E(W_n) \) for all \(i = 1, 2, 3, \ldots, n \). Consider \(F = \{G_1, G_2\} \), where \(G_1 = [u_1, u_2, u_3, \ldots, u_n, v] \) and \(G_2 = G \setminus E(G_1) \). Then, \(F \) is a tree cover of \(W_n \). Thus, \(t_c(W_n) \leq 2 \). Accordingly, \(t_c(W_n) = 2 \).

We establish our result in on cyclic graphs in the following section.

4 Tree Cover of Cyclic Graphs

We present new definitions here that are useful in obtaining the results on the tree cover and tree covering number of cyclic graphs.

Theorem 4.1 Let \(G \) be a unicyclic graph. Then \(t_c(G) = 2 \).

Proof: Let \(G \) be a unicyclic graph and \(C_t = [u_1, u_2, u_3, \ldots, u_t, u_1] \) be the unique cycle in \(G \) of order \(t \). Consider \(F = \{G_1, G_2\} \), where \(G_1 = G \setminus \{u_1, u_t\} \) and \(G_2 = [u_1, u_t] \). Then \(G_1 \) and \(G_2 \) are trees. Moreover, \(F \) is a tree cover of \(G \). Thus, \(t_c(G) \leq 2 \). By Theorem 2.2, \(t_c(G) \geq 2 \). Accordingly, \(t_c(G) = 2 \). \(\square \)
Definition 4.2 Let G be a nontrivial connected graph. A cycle C_t in G is said to be minimal (minimal cycle or m_t-cycle) if C_t does not contain any cycle of order less than t. The m_t-cycle derivative of G, denoted by m_tG' is the graph obtain from G by taking the m_t-cycles of G as vertices in m_tG' and two vertices in m_tG' are adjacent if and only if the two m_t-cycles in G corresponding to these vertices have an edge in common.

Theorem 4.3 Let G be a nontrivial connected graph. If $m_tG' = K_1$ then $t_c(G) = 2$.

Proof: Assume that $m_tG' = K_1$. Then G is unicyclic. Thus, by Theorem 4.1, $t_c(G) = 2$. \[\square\]

References

Received: September 1, 2014; Published: October 23, 2014