On the Method of Lyapunov Constant-Sign Functionals

S. V. Pavlikov
Kazan (Volga region) Federal University, Russian Federation
and
Kazan National Exploring Technical University, Russian Federation

A. G. Isavnin
Kazan (Volga region) Federal University, Russian Federation

D. T. Suyucheva
Kazan Institute of Economics, Management and Law, Russian Federation

Corresponding author: A. G. Isavnin
423809, Naberezhnye Chelny, prospect Mira, dom 47 (16/08), kvartira 347, Russian Federation

Copyright © 2014 S. V. Pavlikov, A. G. Isavnin and D. T. Suyucheva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the work there is investigated the stability of the zero solution of a non-autonomous functional differential equation of the delayed type by means of limiting equations and Lyapunov constant-sign functional. An appropriate illustrating example is given.

Keywords: Lyapunov constant-sign functional, limit equations, stability problem

1. Introduction. Basic definitions and limiting equations

Suppose \mathbb{R} is a real axis, \mathbb{R}^n is a real linear space of n-vectors x with a norm $|x|$, $h = \text{const} > 0$ is a real number, C is the Banach space of continuous
functions $\varphi : [-h,0] \to \mathbb{R}^n$ with a norm $\|\varphi\| = \sup(|\varphi(s)|, -h \leq s \leq 0)$. C_H is a space $\{\varphi \in C : \|\varphi\| < H, H > 0\}$. For a continuous function $x :]-\infty, +\infty[\to \mathbb{R}^n$ and every $t \in \mathbb{R}$, the function $x_t(s) \in C_H$ is defined by the equality $x_t(s) = x(t + s), s \in [-h,0]$. A right-hand derivative is denoted by $\dot{x}(t)$.

The functional differential equation with a finite delay

$$\dot{x}(t) = f(t, x_t), f(t,0) = 0$$

(1)

is considered, where $f : \mathbb{R}^+ \times C_H \to \mathbb{R}^n$ is a continuous function which satisfies the following assumptions [1, 4].

Assumption 1. The function $f = f(t, \varphi)$ is bounded in each set $\mathbb{R}^+ \times \overline{C}_r, \overline{C}_r = \{\varphi \in C : \|\varphi\| = r < H\}$:

$$|f(t, \varphi)| \leq m(r), (t, \varphi) \in \mathbb{R}^+ \times \overline{C}_r.$$

The smoothing of the solutions of Eq. (1) as t increases follows from this assumption and, in particular, if $x = x(t, \alpha, \varphi), (\alpha, \varphi) \in \mathbb{R}^+ \times C_H$ is a solution of Eq.(1) which satisfies the initial condition $x_{\alpha} = \varphi$, then, for the values $t \geq \alpha + h$, the function $x_t \in \Gamma$, where $\Gamma \subset C_H$ is the union of the family of imbedded compact sets $\Gamma = \bigcup_{n=1}^{\infty} K_n, K_1 \subset K_2 \subset \ldots \subset K_n \subset \ldots [1]$.

Assumption 2. The function $f = f(t, \varphi)$ satisfies the Lipschitz condition with respect to φ in each compact set $K \subset C_H$, that is for any $t \in \mathbb{R}^+$ and $\varphi_1, \varphi_2 \in K$ the inequality holds:

$$|f(t, \varphi_1) - f(t, \varphi_2)| \leq l(K)\|\varphi_1 - \varphi_2\|.$$

The uniqueness of the solution $x = x(t, \alpha, \varphi), (\alpha, \varphi) \in \mathbb{R}^+ \times C_H$ of Eq.(1) follows from the second assumption [3].

Assumption 3. The function $f = f(t, \varphi)$ is uniformly continuous with respect to $(t, \varphi) \in \mathbb{R}^+ \times K$ for each compact set $K \subset C_H$.

Under this assumption, 3 the family of shifts $\{f^\tau(t, \varphi) = f(t + \tau, \varphi), \tau \in \mathbb{R}^+\}$ is precompact in a certain space F of continuous functions $f : \mathbb{R}^+ \times \Gamma \to \mathbb{R}^n$ [1].
A function \(f^* : \mathbb{R}^+ \times \Gamma \to \mathbb{R}^n \) is called as the limiting function to \(f(t, \varphi) \), if a sequence \(t_n \to +\infty \) exists such that \(f(t + t_n, \varphi) \) is convergent to \(f^*(t, \varphi) \) in \(F \).

The equation

\[
\dot{x}(t) = f^*(t, x)
\]

(2)
is called the limiting one to (1). The domain of the limiting equation is defined by \(\mathbb{R} \times \Gamma \). The uniqueness of solution of Eq. (2) follows from the second assumption.

The correlation between the solutions of Eq.(1) and Eq.(2) is determined by the following theorem [1].

Theorem 1. Suppose the function \(f : \mathbb{R}^+ \to \mathbb{R}^n \) is a limiting function to \(f \) in \(F \) with respect to a sequence \(t_n \to +\infty \), and sequences \(\{\alpha_n \in \mathbb{R}^+\} \) and \(\{\varphi_n \in \Gamma\} \) are such, that \(\alpha_n \to \alpha \in \mathbb{R}^+ \), \(\varphi_n \to \varphi \in \Gamma \) at \(n \to \infty \). Then, if \(x = x(t_n + \alpha_n, \varphi_n) \) are solutions of Eq.(1), and \(x^* = x^*(t, \alpha, \varphi) \) is a solution of limiting Eq.(2), defined for \(t \in [\alpha - h, \beta] \), the sequence of functions \(x = x(t + t_n, t_n + \alpha_n, \varphi_n) \) converges to \(x^* = x^*(t, \alpha, \varphi) \) uniformly with respect to \(t \in [\alpha - h, \gamma] \) for every \(\gamma < \beta \).

2. Basic results. Stability theorems

We will investigate the problem of the stability on the base of Lyapunov constant-sign functionals. We shall use the following definitions.

Definition 1. The solution \(x = 0 \) of Eq.(1) is stable with respect to set \(\Lambda \subset C_H \), if, for any \(\varepsilon > 0 \) one can get \(\delta = \delta(\varepsilon) > 0 \), so that for \(\varphi \in \Lambda \cap \{\|\varphi\| < \delta\} \) it is true that \(|x(t, 0, \varphi)| < \varepsilon \) for each solution \(x(t, 0, \varphi) \) of Eq.(1) for any \(t \geq 0 \).

Definition 2. The solution \(x = 0 \) of Eq.(1) is uniformly asymptotically stable with respect to set \(\Lambda \subset C_H \), if it is stable with respect to \(\Lambda \subset C_H \) and a \(\Delta > 0 \) exists, so that for any \(\varepsilon > 0 \) one can get \(T = T(\varepsilon) > 0 \), so that for every \(\varphi \in \Lambda \cap \{\|\varphi\| < \Delta\} \) it is true that \(\|x(t, 0, \varphi)\| < \varepsilon \) for any \(t \geq T \).

Definition 3. The solution \(x = 0 \) is a point of uniform attraction for the whole family of limiting equations \(\{\dot{x}(t) = f^*(t, x)\} \) with respect to set \(\Lambda \subset C_H \), if a \(\Delta \) exists, so that for any \(\varepsilon > 0 \) there is \(T = T(\varepsilon) > 0 \), so that
for any solution \(x^*(t,0,\varphi) \), \(\varphi \in \Lambda \cap \{ \| \varphi \| < \Delta \} \) of any equation \(\dot{x}(t) = f^*(t,x(t)) \) for any \(t \geq T \) the inequality \(\| x^*_t(0,\varphi) \| < \varepsilon \) holds.

Suppose \(V : R^+ \times C_H \rightarrow R^+ \) is a certain continuous functional, \(x = x(t,\alpha,\varphi), (\alpha,\varphi) \in R^+ \times C_H \) is a certain solution of Eq.(1). Along this solution the functional \(V \) is a continuous time-dependent function \(V(t) = V(t,x(t,\alpha,\varphi)) \). For this function it is possible to define an upper right-hand derivative \(\dot{V}(t,\varphi) \).

Let us denote \(\omega^+_i(u) \) continuous strictly monotonically increasing functions \(\omega^+_i : R^+ \rightarrow R^+ \), \(\omega^+_i(0) = 0 \).

Definition 4. Let us define a set for the functional \(V(t,\varphi) : V^{-1}(\infty,0) = \{ \varphi \in C_H : \exists \varphi_n \in C_H, \exists \tau_n \rightarrow +\infty : \varphi_n \rightarrow \varphi, V(t_n,\varphi_n) \rightarrow 0, n \rightarrow +\infty \} \).

The definitions which have been introduced enable us to derive the sufficient conditions of stability and asymptotic stability when a non-negative functional with a non-positive derivative exists.

Let us prove the following theorem about stability of zero solution \(x = 0 \) of Eq.(1) using a constant-sign functional \(V \).

Theorem 2. Suppose that:

1) a continuous functional \(V : R^+ \times C_H \rightarrow R^+ \) exists, so that \(V(t,\varphi) \geq 0, V(t,0) = 0, \dot{V}(t,\varphi) \leq 0, (t,\varphi) \in R^+ \times C_H \);

2) the solution \(x = 0 \) is a point of uniform attraction for solutions \(\{ \dot{x}(t) = f^*(t,x(t)) \} \) with respect to the set \(\Lambda_0 = V^{-1}(\infty,0) \).

Then the solution \(x = 0 \) is stable by Lyapunov.

Proof.

We will assume that the position of equilibrium \(x = 0 \) of Eq. (1) is unstable. Then, at a certain \(\varepsilon_0 : 0 < \varepsilon_0 < H \) there is a moment \(\alpha > 0 \), a sequence \(\{ \varphi_n : \| \varphi_n \| \rightarrow 0, n \rightarrow +\infty \} \), so that for the solutions of Eq.(1) \(x^n(t) = x(t,\alpha,\varphi_n) \) the following is true:

\[
\| x^n_*(\alpha,\varphi_n) \| = \varepsilon_0
\]

at a certain \(t = t_n \). From the uniqueness of \(x = 0, t_n \rightarrow +\infty \) follows.

Suppose a \(\Delta > 0 \) is a number, defined by condition 2 of the theorem. We assume \(\delta_0 = \frac{1}{2} \min(\varepsilon_0,\Delta) \). Then for the solutions \(x^n(t) = x(t,\alpha,\varphi_n) \) there is a
sequence $t_n^\delta \leq t_n^\varepsilon$, so that:

$$
\left\| x_{t_n^\varepsilon}^{n} (\alpha, \varphi_n) \right\| = \delta_0, \left\| x_{t_n^\varepsilon} (\alpha, \varphi_n) \right\| < \delta_0, \ t \in [\alpha, t_n^\varepsilon) .
$$

(4)

It is obvious, that $t_n^\delta \to \infty$.

Due to condition $V(t,0) \equiv 0$ one can assume that there are numbers $\Delta_n \to 0$, so that $V(\alpha, \varphi_n) \leq \Delta_n$. As $\dot{V}(t, \varphi) \leq 0$, we get:

$$
V(t, x^n_t (\alpha, \varphi_n)) \leq \Delta_n, t > \alpha .
$$

(5)

We put $\delta_1 = \frac{\delta_0}{2}$. Suppose $T = T(\delta_1)$ is a number, defined from condition 2 of the theorem according to definition 3. Let $t_n^\delta = t_n^\varepsilon - T$.

From Assumption 1 the family of function $\left\{ x^n_{t_n^\delta} (\alpha, \varphi_n) \right\}$ is precompact in C_{δ_1}, than there is the presequence (without restricting of the generality we accept that it coincides with t_n^δ) and the function φ_{δ_1} are so, that $x^n_{t_n^\delta} \to \varphi_{\delta_1}$, where $\| \varphi_{\delta_1} \| \leq \delta_0$. In this case owing to (5) and to condition for the derivative V we have:

$$
V(t_n^\delta, x^n_{t_n^\delta} (\alpha, \varphi_n)) \to 0 \text{ where } n \to \infty , \text{ it means that } \varphi_{\delta_1} \in V^{-1}(\infty,0) .
$$

It follows from (4) that:

$$
\left\| x_{t_n^\delta}^{n} \right\| = \delta_0, \left\| x_{t_n^\delta} (\alpha, \varphi_n) \right\| < \delta_0 .
$$

(6)

Therefore, there is a subsequence (without restricting of the generality that it coincides with t_n^δ), such that $f(t + t_n^\delta, \varphi) \to f^*_\delta (t, \varphi)$. According to theorem 1 we obtain that $x^*_t (t + t_n^\delta, \alpha, \varphi_n) \to x^*_t (t,0, \varphi_{\delta_1})$ where $x^*_t (t,0, \varphi_{\delta_1})$ is the solution of equation $\dot{x}(t) = f^*_\delta (t, x_t)$.

But then by convention of number T we have that $x^*_t (t,0, \varphi_{\delta_1}) \leq \delta_1$ for each $t \geq T$. Taking the limiting process we obtain from relation of (6), that $\left\| x^*_t (0, \varphi_{\delta_1}) \right\| = \delta_0 = 2 \delta_1$. We deduced the contradiction with the choice of the number of T. Thus we have a stability of zero solution (1).

The theorem is proved.

Theorem 3. We will assume that in addition to the conditions of Theorem 2, $V(t, \varphi) \leq \omega (\| \varphi \|)$ is realized, then the solution $x = 0$ (1) is uniformly stable.

The proof is obtained analogous to the proof of Theorem 2.

Analogous to the proof of Theorem 2 with certain alterations we may proof the following Theorem.
Theorem 4. We will assume that:
1) the continuous functional exists \(V : \mathbb{R}^+ \times C_H \rightarrow \mathbb{R} \) such that
\[
0 \leq V(t, \varphi) \leq \omega(\|\varphi\|) V(t, 0) = 0, \dot{V}(t, \varphi) \leq 0,
\]
\((t, \varphi) \in \mathbb{R}^+ \times C_H\)
2) the solution \(x=0 \) is asymptotically stable uniformly with respect to the set \(\Lambda_0 = V^{-1}(\infty, 0) \).

Then the solution \(x=0 \) of equation (1) is uniformly stable by Lyapunov.

3. Example

Consider the following system of equations:
\[
\begin{align*}
\dot{x}_1 &= -p(t, x_1(t) - r_1(t)), \dot{x}_2(t) = f_1(t, x_1(t) - r_1(t)) + g(t, x_1(t), x_2(t), x_2(t)), \\
\dot{x}_2 &= -f_2(x_2(t)).
\end{align*}
\]
(7)

We will admit that \(f_1(t, 0) = 0, f_2(0) = 0, r_i(t) : 0 < r_i(t) \leq h = \text{const} \)

We will assume that the function \(f_1(t, x) \) has a continuous partial derivative to \(x \) and functions \(p(t, x_1, x_2), f_1(t, x_1), f_{1i}(t, x_1), r_i(t) \) are confined, uniformly continuous functions of their arguments \(t \in \mathbb{R}^+, x_1, x_2 \in [-\beta, \beta] (\beta > 0) \), functions
\(p(t, x_1, x_2), f_1(t, x_1), f_{1i}(t, x_1) \) satisfies for \(x_1, x_2 \in [-\beta, \beta] \) Lipschitz conditions:
\[
|f(t, x_{12}) - f(t, x_{11})| \leq l|x_{12} - x_{11}| (l = \text{const})
\]

We will assume that the following conditions are met:
1) for any \(\varepsilon > 0 \) we may find \(\delta = \delta(\varepsilon) > 0 \) such that for \(\{x_1 : |x_1| = \varepsilon\} \) the inequality is satisfied:
\[
\lim_{t \to +\infty} \inf |f(t, x_1)| \geq \delta
\]
(8)
2) for all \(t \in \mathbb{R}^+, x_1 \in [-\beta, \beta] \):
\[
t \in \mathbb{R}^+, x_1 \in [-\beta, \beta]
\]
(9)
3) \(f_1(t, x_1)x_1 > 0 (\forall t \geq 0, \forall x_1 : |x_1| > 0) \)
(10)
4) \(f_2(x_2)x_2 > 0 (\forall x_2 : |x_2| > 0) \)
(11)
On the method of Lyapunov constant-sign functionals

\[|f_{1_2}(t, x_1)| \leq L = \text{const} \quad (12) \]
\[p(t, x_1, \dot{x}_1) \geq h \mu_0 = \text{const} > 0, \mu_0 > L \quad (13) \]
\[g(t, x_1, \dot{x}_1, 0, 0) \equiv 0 \quad (14) \]

5)

Proof: that undisturbed motion \(\dot{x}_1 = \dot{x}_2 = x_1 = x_2 = 0 \) of system (7) is uniformly stable.

From the motion equation to \(x_2 \) find the first integral:

\[U_0(x_2, \dot{x}_2) = \frac{\dot{x}_2^2(t)}{2} + \int_{0}^{\infty} f_2(t) dt = c = \text{const} \]

Let us take \(U_0(x_2, \dot{x}_2) \) in place of Lyapunov functional \(V \). It is obvious that this functional allows for an infinitely small upper limit, it is constant signs and its derivate is \(\dot{V} \equiv 0 \).

On the set:

\[V^{-1}(\infty, 0) = U_0^{-1}(\infty, 0) = \{ U_0(x_2, \dot{x}_2) = 0 \} = \{ x_2 = 0, \dot{x}_2 = 0 \} \]

the first equation (7) takes on form:

\[\ddot{x}_1 = -p(t, x_1(t - r_1(t))), \dot{x}_1(t - r_2(t))) \dot{x}_1(t) - f_1(t, x_1(t - r_2(t))) \]

Research the solution stability of \(x_1 = \dot{x}_1 = 0 \) of equation (15). For convenience we will mark:

\[x_i = y_1 \quad \dot{x}_1 = y_2 \]

Then the equation (15) may be written in system form:

\[\begin{cases}
\dot{y}_1(t) = y_2(t), \\
\dot{y}_2(t) = -p(t, y_1(t - r_1(t))), y_2(t - r_2(t)))y_2(t) - \end{cases} \]

\[- f_1(t, y_1(t)) + \int_{-r_1(t)}^{0} f_{1y}(t, y_1(t + s))y_2(t + s)ds. \quad (16) \]

For researching stability of zero solution (16) we will consider the following Lyapunov functional:

\[V_1(t, \varphi_1, \varphi_2) = \frac{\varphi_2^2(0)}{2} + \int_{0}^{\varphi_1(0)} f_1(t, s)ds + \frac{\mu_0}{2} \int_{-h}^{0} \varphi_2^2(u) du ds. \]

Here, \(\varphi_1(0) = y_1(t), \varphi_2(s) = y_2(t + s), -h \leq s \leq 0 \)

The functional \(V_1 \) allows for an infinitely small upper limit and it is constant sign to \(\varphi(0) = (\varphi_1 \varphi_2) \) that follows from the functional and the above conditions.

For derivative \(\dot{V}_1(t, \varphi) \) in consequence of (16), if the conditions (8) –
(13) have been fulfilled we find an estimate:

\[
\dot{V}_1(t, \varphi) \leq -\frac{\mu_0 - L}{2} \int_{-h}^{0} (\varphi_2^*(0) + \varphi_2^*(s))ds \leq 0.
\]

The limit to (16) system is the following:

\[
\begin{cases}
\dot{y}_1(t) = y_2(t), \\
\dot{y}_2(t) = -p^*(t, y_1(t - r_1^*(t)), y_2(t - r_2^*(t)))y_2(t) - \\
- \int_{-t_1^*(t)}^{0} f^*_1(t, y_1(t + s))y_2(t + s)ds & (17)
\end{cases}
\]

We put \(W_i = \frac{\mu_0 - L}{2} \int_{-h}^{0} (\varphi_2^*(0) + \varphi_2^*(s))ds \). We get the set \(\{W_1(t, \varphi) = 0\} = \varphi_2 = 0 \}. Substituting the value \(y_2(t) = 0 \) in the system (17), we find out that the set \(\{W_1(t, \varphi) = 0\} \) doesn’t contain the whole solution of the system (17), except zero. According the theorem 4.5 from (4) we get uniform asymptotic stability \(y_2 = y_1 = 0 \) of system (16), it means also we get uniform asymptotic stability of zero solution \(\dot{x}_1 = x_1 = 0 \) of system (15). Then, the solution \(\dot{x}_1 = \dot{x}_2 = x_1 = x_2 = 0 \) of system (7) is asymptotically stable to the set:

\[
V^{-1}(\infty, 0) = U^{-1}_{0}(\infty, 0) = \{U_0(x_2, \dot{x}_2) = 0\} = \{x_2 = 0, \dot{x}_2 = 0\}.
\]

By this means, according to the theorem 4, we get the uniform stability of unperturbed motion \(\dot{x}_1 = \dot{x}_2 = x_1 = x_2 = 0 \) of system (7).

4. Conclusion

There is the development of the method of Lyapunov constant -sign functionals with using of the limit equations in the work. The obtained theorems 2-4 develop and expand some results from [4].

References

Received: August 5, 2014