A Note on the Twisted Changhee Polynomials with q-Parameter

Sun Jung Lee

Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea

Jin-Woo Park

Department of Mathematics Education
Sehan University, YoungAm-gun
Chunnam, 526-702, Korea

Copyright © 2014 Sun Jung Lee and Jin-Woo Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we consider Changhee polynomials with q-parameter and investigate some properties of those polynomials.

Mathematics Subject Classification: 05A19, 11B65, 11B83

1 Introduction

Let p be a fixed odd prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p, and \mathbb{C}_p will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completions of algebraic closure of \mathbb{Q}_p. The p-adic norm is defined $|p|_p = \frac{1}{p}$.

1 Corresponding author
When one talks of q-extension, q is various considered as an indeterminate, a complex $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, one normally assumes that $|q| < 1$. If $q \in \mathbb{C}_p$, then we assume that $|q - 1|_p < p^{-\frac{1}{p-1}}$ so that $q^x = \exp(x \log q)$ for each $x \in \mathbb{Z}_p$. Throughout this paper, we use the notation:

$$[x]_q = \frac{1 - q^x}{1 - q}.$$

Note that $\lim_{q \to 1}[x]_q = x$ for each $x \in \mathbb{Z}_p$.

Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$, the p-adic invariant integral on \mathbb{Z}_p is defined by by Kim as follows:

$$I_{-1}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x) = \lim_{n \to \infty} \frac{1}{p^n} \sum_{x=0}^{p^n-1} f(x) (-1)^x, \text{ (see \cite{7, 8}).} \quad (1.1)$$

Let f_1 be the translation of f with $f_1(x) = f(x + 1)$. Then, by (1.1), we get

$$I(f_1) + I(f) = 2f(0). \quad (1.2)$$

As it is known, the Stirling number of the first kind is defined by

$$(x)_n = x(x-1) \cdots (x-n+1) = \sum_{l=0}^{n} S_1(n,l)x^l, \quad (1.3)$$

and the Stirling number of the second kind is given by the generating function to be

$$(e^t - 1)^m = m! \sum_{l=m}^{\infty} S_2(l,m) \frac{t^l}{l!}, \quad (1.4)$$

(see \cite{1, 13}).

Unsigned Stirling numbers of the first kind is given by

$$x^n = x(x+1) \cdots (x+n-1) = \sum_{l=0}^{n} |S_1(n,l)| x^l. \quad (1.5)$$

Note that if we replace x to $-x$ in (1.3), then

$$(-x)_n = (-1)^n x^n = (-1)^n \sum_{l=0}^{n} |S_1(n,l)| x^l$$

$$= \sum_{l=0}^{n} S_1(n,l)(-1)^l x^l. \quad (1.6)$$

Hence $S_1(n,l) = |S_1(n,l)|(-1)^{n-l}$.
For \(r \in \mathbb{N} \), as is well known, the \textit{Euler polynomials of order} \(r \) are defined by the generating function to be
\[
\left(\frac{2}{e^t + 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} E_n^{(r)}(x) \frac{t^n}{n!}, \quad \text{(see [2, 4, 5, 11])}. \tag{1.7}
\]

When \(x = 0 \), \(E_n^{(r)} = E_n^{(r)}(0) \) are called the \textit{Euler numbers of order} \(r \), and in the special case, \(r = 1 \), \(E_n^{(1)}(x) = E_n(x) \) are called the \textit{ordinary Euler polynomials}.

By the definition of Euler polynomials of order \(r \), we obtain the following lemma.

\textbf{Lemma 1.1.} For \(n \geq 0 \) and positive integer \(k \), we have
\[
E_n^{(k)}(-x) = (-1)^n E_n^{(k)}(x + k).
\]

\textit{Proof.}
\[
\sum_{n=0}^{\infty} E_n^{(k)}(-x) \frac{t^n}{n!} = \left(\frac{2}{e^t + 1} \right)^k e^{-xt} = \left(\frac{2}{1 + e^{-t}} \right) e^{-(x+k)t} = \sum_{n=0}^{\infty} (-1)^n E_n^{(k)}(x + k) \frac{t^n}{n!}. \tag{1.8}
\]

\(\square \)

We observe that, by (1.2),
\[
\int_{\mathbb{Z}_p} e^{(x+y)t} \ d\mu_{-1}(y) = \frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!},
\]
and thus
\[
\int_{\mathbb{Z}_p} (x + y)^n \ d\mu_{-1}(y) = E_n(x), \quad (n \geq 0), \quad (\text{see [4, 10]}). \tag{1.9}
\]

For \(n \in \mathbb{N} \), let \(T_p \) be the \(p \)-adic locally constant space defined by
\[
T_p = \bigcup_{n \geq 1} C_p^n = \lim_{n \to \infty} C_p^n,
\]
where \(C_p^n = \{ \omega | \omega^{p^n} = 1 \} \) is the cyclic group of order \(p^n \).

We assume that \(q \) is an indeterminate in \(\mathbb{C}_p \) with \(|1 - q|_p < p^{-\frac{1}{n-1}} \). Then we define the \(q \)-analogue of falling factorial sequence as follows:
\[
(x)_{n,q} = x(x - q)(x - 2q) \cdots (x - (n-1)q), \quad (n \geq 1), \quad (x)_{0,q} = 1.
\]
Note that
\[\lim_{q \to 1} (x)_{n,q} = (x)_n = \sum_{l=0}^{n} S_1(n,l)x^l. \]

Recently, D. S. Kim et. al introduced the Changhee polynomials as follows:

\[C_n(x) = \int_{\mathbb{Z}_p} (x + y)_n d\mu_1(y), \quad (n \geq 0), \quad (\text{see } [6, 9, 12]). \] (1.10)

When \(x = 0 \), \(C_n = C_n(0) \) are called the \(n \)'s Changhee numbers. From (1.10), we can derive the generating function to be

\[\left(\frac{2}{2 + t} \right) (1 + t)^x = \sum_{n=0}^{\infty} C_n(x) \frac{t^n}{n!}, \quad (\text{see } [6]). \] (1.11)

In addition, D. S. Kim et. al. consider the Changhee polynomials with \(q \)-parameter which is defined by the generating function to be

\[\sum_{n=0}^{\infty} C_{n,q} \frac{t^n}{n!} = (1 + qt)^{\frac{x}{q}} \frac{2}{(1 + qt)^{\frac{1}{q}} + 1}, \quad (\text{see } [3]). \] (1.12)

When \(x = 0 \), \(C_{n,q} = C_{n,q}(0) \) are called the Changhee numbers with \(q \)-parameter.

In the viewpoint of generalization of the Changhee polynomials with \(q \)-parameter, we consider the twisted Changhee polynomials with \(q \)-parameter which are defined by the generating function to be

\[\sum_{n=0}^{\infty} C_{n,\xi,q} \frac{t^n}{n!} = (1 + q\xi t)^{\frac{x}{q}} \frac{2}{(1 + q\xi t)^{\frac{1}{q}} + 1}, \quad \xi \in T_p. \] (1.13)

In this paper, we give a \(p \)-adic integral representation of the twisted Changhee polynomials with \(q \)-parameter, which are called the Witt-type formula for the twisted Changhee polynomials with \(q \)-parameter. We can derive some interesting properties related to the \(n \)-th twisted Changhee polynomials with \(q \)-parameter.

2 Witt-type formula for the \(n \)-th twisted Changhee polynomials with \(q \)-parameter

In this section, we assume that \(t \in \mathbb{C}_p \) with \(|t|_p < \left| \frac{p-1}{q} \right|_p \). We consider the following integral representation associated with falling factorial sequences:
\[\int_{Z_p} (x + y)_{n,q} d\mu_1(y), \text{ where } n \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\}. \] (2.1)

By (2.1),
\[
\sum_{n=0}^{\infty} \xi^n \int_{Z_p} (x + y)_{n,q} d\mu_1(y) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \xi^n q^n \int_{Z_p} \left(\frac{x + y}{q} \right)_n d\mu_1(y) \frac{t^n}{n!} = \sum_{n=0}^{\infty} (q\xi)^n \int_{Z_p} \left(\frac{x + y}{q} \right)_n d\mu_1(y) t^n = \int_{Z_p} (1 + q\xi t)^\frac{x + y}{q} d\mu_1(y). \] (2.2)

If we put \(f(x) = (1 + q\xi t)^\frac{x + y}{q} \), then, by (1.1), we get
\[
\int_{Z_p} (1 + q\xi t)^\frac{x + y}{q} d\mu_1(y) = (1 + q\xi t)^\frac{\xi}{q} \frac{2}{(1 + q\xi t)^\frac{\xi}{q} + 1} = \sum_{n=0}^{\infty} (q\xi)^n \int_{Z_p} (1 + q\xi t)^\frac{x + y}{q} d\mu_1(y). \tag{2.3}
\]

By (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For \(n \geq 0 \), we have
\[Ch_{n,\xi,q}(x) = \xi^n \int_{Z_p} (x + y)_{n,q} d\mu_1(y). \]

In (2.3), by replacing \(t \) by \(\frac{1}{\xi q} \left(e^{\xi t} - 1 \right) \), we have
\[
\sum_{n=0}^{\infty} Ch_{n,\xi,q}(x) \frac{1}{\xi^n q^n} \frac{(e^{\xi t} - 1)^n}{n!} = \frac{e^{\xi t} - 1}{e^{\xi t} + 1} = \sum_{n=0}^{\infty} E_n(x) \xi^n t^n \frac{q^n}{q^n n!} \tag{2.4}
\]

and
\[
\sum_{n=0}^{\infty} Ch_{n,\xi,q}(x) \frac{1}{\xi^n q^n} \frac{(e^{\xi t} - 1)^n}{n!} = \sum_{n=0}^{\infty} Ch_{n,\xi,q}(x) \frac{1}{\xi^n q^n} \sum_{m=n}^{\infty} \xi^m S_2(m, n) t^m \frac{m!}{m!} = \sum_{m=0}^{\infty} \sum_{n=0}^{m} Ch_{n,\xi,q}(x) \xi^m S_2(m, n) t^m \frac{m!}{m!}. \tag{2.5}
\]

By (2.4) and (2.5), we obtain the following corollary.
Corollary 2.2. For \(n \geq 0 \), we have

\[
E_n(x) = \sum_{m=0}^{n} C_{m,\xi,q}(x) \xi^{-m} q^{n-m} S_2(n, m) \quad (m \geq 0).
\]

By the Theorem 2.1,

\[
C_{n,\xi,q}(x) = \xi^n \int_{\mathbb{Z}_p} (x + y)_{n,q} d\mu_{-1}(y)
\]

\[
= \xi^n q^n \int_{\mathbb{Z}_p} \left(\frac{x + y}{q} \right)_n d\mu_{-1}(y) \quad (2.6)
\]

\[
= \xi^n q^n \sum_{l=0}^{n} \frac{1}{q^l} S_1(n, l) \int_{\mathbb{Z}_p} (x + y)^l d\mu_{-1}(y).
\]

By (1.9) and (2.6), we obtain the following corollary.

Corollary 2.3. For \(n \geq 0 \), we have

\[
C_{n,\xi,q}(x) = \xi^n \sum_{l=0}^{n} q^{n-l} S_1(n, l) E_l(x)
\]

\[
= \xi^n \sum_{l=0}^{n} |S_1(n, l)| (-q)^{n-l} E_l(x).
\]

From now on, we consider twisted Changhee polynomials of order \(k \in \mathbb{N} \) with \(q \)-parameter. Twisted Changhee polynomials of order \(k \in \mathbb{N} \) with \(q \)-parameter are defined by the multivariant \(p \)-adic invariant integral on \(\mathbb{Z}_p \):

\[
C_{n,\xi,q}^{(k)}(x) = \xi^n \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots + x_k + x)_{n,q} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k) \quad (2.7)
\]

where \(n \) is an nonnegative integer and \(k \in \mathbb{N} \). In the special case, \(x = 0 \),
\[C_{n,\xi,q}^{(k)} = C_{n,\xi,q}^{(k)}(0) \] are called the Changhee numbers of order \(k \) with \(q \)-parameter.
From (2.7), we can derive the generating function of $D_{n,\xi,q}^{(k)}(x)$ as follows:

$$
\sum_{n=0}^{\infty} Ch_{n,\xi,q}^{(k)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \xi^n q^n \int \cdots \int (\frac{x_{1}+\cdots+x_k+x}{q})^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k) t^n
$$

$$
= \int \cdots \int (1 + q\xi t) \frac{x_{1}+\cdots+x_k+x}{q} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
$$

(2.8)

$$
= (1 + q\xi t)^\frac{x}{q} \int \cdots \int (1 + q\xi t) \frac{x_{1}+\cdots+x_k+x}{q} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
$$

$$
= (1 + q\xi t)^\frac{x}{q} \left(\frac{2}{(1 + q\xi t)^\frac{1}{q} + 1} \right)^k.
$$

Note that, by (2.7),

$$
Ch_{n,\xi,q}^{(k)}(x) = \xi^n q^n \sum_{m=0}^{n} \frac{S_1(n,m)}{q^m} \int \cdots \int (x_1 + \cdots + x_k + x)^m d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k).
$$

(2.9)

Since

$$
\int \cdots \int e^{(x_1+\cdots+x_k+x)t} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
$$

$$
= \left(\frac{2}{e^t + 1} \right)^k e^{xt} = \sum_{n=0}^{\infty} E_n^{(k)}(x) \frac{t^n}{n!},
$$

we can derive easily

$$
E_n^{(k)}(x) = \int \cdots \int (x_1 + \cdots + x_k + x)^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k).
$$

(2.10)

Thus, by (2.9) and (2.10), we have

$$
Ch_{n,\xi,q}^{(k)}(x) = \xi^n q^n \sum_{m=0}^{n} \frac{S_1(n,m)}{q^m} E_m^{(k)}(x)
$$

$$
= \xi^n \sum_{m=0}^{n} q^{n-m} S_1(n,m) E_m^{(k)}(x)
$$

(2.11)

$$
= \xi^n \sum_{m=0}^{n} |S_1(n,m)| (-q)^{n-m} E_m^{(k)}(x).
$$
In (2.8), by replacing t by $\frac{1}{q}\left(e^{\xi t} - 1\right)$, we get
\[
\sum_{n=0}^{\infty} Ch_n^{(k)}(x) \frac{(e^{\xi t} - 1)^n}{\xi^n q^n n!} = e^{\frac{\xi x}{q}} \left(\frac{2}{e^t + 1}\right)^k
= \sum_{n=0}^{\infty} \frac{\xi^n E_n^{(k)}(x) t^n}{q^n n!},
\]
(2.12)
and
\[
\sum_{n=0}^{\infty} \frac{Ch_n^{(k)}(x)}{\xi^n q^n} \frac{1}{n!} (e^{\xi t} - 1)^n = \sum_{n=0}^{\infty} \frac{Ch_n^{(k)}(x)}{\xi^n q^n} \sum_{l=n}^{\infty} S_2(l, n) t^l l!
= \sum_{m=0}^{\infty} \left(\xi^m \sum_{n=0}^{m} \frac{Ch_n^{(k)}(x)}{\xi^n q^n} S_2(m, n)\right) \frac{t^m}{m!}.
\]
(2.13)
By (2.11), (2.12) and (2.13), we obtain the following theorem.

Theorem 2.4. For $n \geq 0$ and $k \in \mathbb{N}$, we have
\[
Ch_n^{(k)}(x) = \xi^n \sum_{m=0}^{n} q^{n-m} S_1(n, m) E_m^{(k)}(x)
= \xi^n \sum_{m=0}^{n} |S_1(n, m)| (-q)^{n-m} E_m^{(k)}(x).
\]
and
\[
E_n^{(k)}(x) = \sum_{m=0}^{n} Ch_m^{(k)}(x) \xi^{-m} q^{n-m} S_2(n, m).
\]

Now, we consider the twisted Changhee polynomials of the second kind with q-parameter as follows:
\[
\tilde{Ch}_n^{(k)}(x) = \xi^n \int_{\mathbb{Z}_p} (-y + x)_{n,q} d\mu_{-1}(y), \quad (n \geq 0).
\]
(2.14)
In the special case, $x = 0$, $\tilde{Ch}_n^{(k)}(0) = \tilde{Ch}_n^{(k)}$ are called the twisted Daehee numbers of the second kind with q-parameter.

By (2.14), we have
\[
\tilde{Ch}_n^{(k)}(x) = \xi^n q^n \int_{\mathbb{Z}_p} \left(\frac{-y + x}{q}\right)_n d\mu_{-1}(y),
\]
(2.15)
and so we can derive the generating function of $\widehat{Ch}_{n,\xi,q}(x)$ by (1.1) as follows:

$$\sum_{n=0}^{\infty} \frac{\widehat{Ch}_{n,\xi,q}(x) t^n}{n!} = \sum_{n=0}^{\infty} q^n \xi^n \int_{\mathbb{Z}_p} \left(\frac{-y + x}{q} \right)_n d\mu_{-1}(y) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} q^n \xi^n \int_{\mathbb{Z}_p} \left(\frac{-y + x}{q} \right) d\mu_{-1}(y) t^n$$

$$= \int_{\mathbb{Z}_p} (1 + q\xi t)^{-\frac{y+x}{q}} d\mu_{-1}(y)$$

$$= (1 + q\xi t)^{-\frac{x}{q}} \frac{2}{(1 + q\xi t)^\frac{1}{q} + 1}.$$ \hspace{1cm} (2.16)

From (1.3), (1.6) and (2.15), we get

$$\widehat{Ch}_{n,\xi,q}(x) = q^n \xi^n \int_{\mathbb{Z}_p} \left(\frac{-y + x}{q} \right) d\mu_{-1}(y)$$

$$= q^n \xi^n \int_{\mathbb{Z}_p} \sum_{l=0}^{n} S_1(n,l) \left(\frac{-y + x}{q} \right)^l d\mu_{-1}(y)$$

$$= \xi^n \sum_{l=0}^{n} S_1(n,l)(-1)^l \int_{\mathbb{Z}_p} (y - x)^l d\mu_{-1}(y) q^{n-l}$$

$$= \xi^n \sum_{l=0}^{n} S_1(n,l)(-1)^l E_l(-x) q^{n-l}$$

$$= (-\xi)^n \sum_{l=0}^{n} |S_1(n,l)| E_l(-x) q^{n-l}.$$ \hspace{1cm} (2.17)

By Lemma 1.1 and (2.17), we have the following theorem.

Theorem 2.5. For $n \geq 0$, we have

$$\widehat{Ch}_{n,\xi,q}(x) = \xi^n \sum_{l=0}^{n} S_1(n,l)(-1)^l E_l(-x) q^{n-l}$$

$$= \xi^n \sum_{l=0}^{n} |S_1(n,l)| E_l(x+1) (-q)^{n-l}.$$ \hspace{1cm} (2.18)

By replacing t by $\frac{1}{q^\xi} (e^{\xi t} - 1)$ in (2.16), we have

$$\sum_{n=0}^{\infty} \frac{\widehat{Ch}_{n,\xi,q}(x)}{q^n \xi^n} \frac{(e^{\xi t} - 1)^n}{n!} = e^{\xi (x+1) \frac{2}{e^{\frac{\xi}{q}} + 1}}$$

$$= \sum_{n=0}^{\infty} \frac{\xi^n E_n(x+1) t^n}{q^n n!}.$$ \hspace{1cm} (2.18)
and

\[\sum_{n=0}^{\infty} \hat{C}h_{n,\xi,q}(x) \frac{1}{q^n \xi^n} \frac{(e^{\xi t} - 1)^n}{n!} = \sum_{n=0}^{\infty} \hat{C}h_{n,\xi,q}(x) \sum_{m=n}^{\infty} S_2(m, n) \frac{(\xi t)^m}{m!} \]

\[= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \hat{C}h_{m,\xi,q}(x) S_2(n, m) q^{-m} \xi^{n-m} \right) \frac{t^n}{n!}. \tag{2.19} \]

By (2.18) and (2.19), we obtain the following theorem.

Theorem 2.6. For \(n \geq 0 \), we have

\[E_n(x + 1) = \sum_{m=0}^{n} q^{n-m} \xi^{-m} \hat{C}h_{m,\xi,q}(x) S_2(n, m). \]

Now, we consider higher-order twisted Changhee polynomials of second kind with \(q \)-parameter. Higher-order twisted Changhee polynomials of second kind with \(q \)-parameter are defined by the multivariant \(p \)-adic invariant integral on \(\mathbb{Z}_p \):

\[\hat{C}h^{(k)}_{n,\xi,q}(x) = \xi^n \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (-x_1 - \cdots - x_k + x)_{n,q} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k) \tag{2.20} \]

where \(n \) is an nonnegative integer and \(k \in \mathbb{N} \). In the special case, \(x = 0 \), \(\hat{C}h^{(k)}_{n,\xi,q} = \hat{C}h^{(k)}_{n,\xi,q}(0) \) are called the higher-order twisted Changhee numbers of second kind with \(q \)-parameter.

From (2.20), we can derive the generating function of \(\hat{C}h^{(k)}_{n,\xi,q}(x) \) as follows:

\[\sum_{n=0}^{\infty} \hat{C}h^{(k)}_{n,\xi,q}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \xi^n q^n \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{x_1 - \cdots - x_k + x}{q} \right) d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k) t^n \]

\[= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + q\xi t)^{-\frac{x_1 - \cdots - x_k + x}{q}} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k) \]

\[= (1 + q\xi t)^{\frac{x+k}{q}} \left(\frac{2}{(1 + q\xi t)^{\frac{1}{q}} + 1} \right)^k. \tag{2.21} \]
By (2.20),
\[
\hat{Ch}_{n,k,q}(x) = \sum_{m=0}^{n} \frac{S_1(n,m)}{q^m} \int_{z_p} \cdots \int_{z_p} (-x_1 - \cdots - x_k + x)^m d\mu_1(x_1) \cdots d\mu_1(x_k)
\]
\[
= \sum_{m=0}^{n} \frac{S_1(n,m)}{(-q)^m} \int_{z_p} \cdots \int_{z_p} (x_1 + \cdots + x_k - x)^m d\mu_1(x_1) \cdots d\mu_1(x_k)
\]
\[
= \xi^n \sum_{m=0}^{n} \frac{S_1(n,m)}{(-q)^m} E_n^{(k)}(-x)
\]
\[
= \xi^n \sum_{m=0}^{n} q^{n-m} S_1(n,m) |E_n^{(k)}(-x)|.
\]

(2.22)

From Lemma 1.1 and (2.22), we obtain the following theorem.

Theorem 2.7. For \(n \geq 0 \), we have

\[
\hat{Ch}_{n,k,q}(x) = \xi^n \sum_{m=0}^{n} (-1)^m q^{n-m} S_1(n,m) E_n^{(k)}(-x)
\]
\[
= \xi^n \sum_{m=0}^{n} (-1)^m q^{n-m} |S_1(n,m)| E_n(x + k).
\]

In (2.21), by replacing \(t \) by \(\frac{1}{q\xi}(e^\xi t - 1) \), we get

\[
\sum_{n=0}^{\infty} \hat{Ch}_{n,k,q}(x) \left(\frac{e^\xi t - 1}{q^n} \right) = e^{\xi t(x+1)} \left(\frac{2}{e^\xi + 1} \right)^k
\]
\[
= \sum_{n=0}^{\infty} \frac{\xi^n E_n^{(k)}(x+1) t^n}{q^n n!},
\]

(2.23)

and

\[
\sum_{n=0}^{\infty} \hat{Ch}_{n,k,q}(x) \frac{1}{n!} (e^\xi t - 1)^n = \sum_{n=0}^{\infty} \frac{\hat{Ch}_{n,k,q}(x)}{\xi^n q^n} \sum_{l=n}^{\infty} S_2(l, n) \xi^l t^l n!
\]
\[
= \sum_{m=0}^{\infty} \left(\xi^m \sum_{n=0}^{m} \frac{\hat{Ch}_{n,k,q}(x)}{\xi^n q^n} S_2(m, n) \right) \frac{t^m}{m!}.
\]

(2.24)

By (2.23) and (2.24), we obtain the following theorem.
Theorem 2.8. For $n \geq 0$ and $k \in \mathbb{N}$, we have

$$E_n^{(k)}(x+1) = \sum_{m=0}^{n} \hat{C} Ch^{(k)}_{m,\xi,q}(x)\xi^{-m}q^{n-m}S_2(n,m).$$

Acknowledgement. This paper was supported by the Sehan University Research Fund in 2014.

References

Changhee polynomials with q-parameter

Received: August 5, 2014