L-Nesting and Multinesting in G-Designs
Recent Results and 50 New Open Problems

Mario Gionfriddo

Department of Mathematics and Computer Science
Catania University, Italy

Copyright © 2014 Mario Gionfriddo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper contains a survey of recent results about nesting and multinesting in G-designs, with generalizations. In the last section there is a list of 50 open problems, useful for next possible research.

Mathematics Subject Classification: 05B05

Keywords: Designs; Graphs

1 Introduction

A G-design of order v and index λ is a pair Σ=(X,B), where X is a set of v distinct elements (vertices) and B is a family of graphs (blocks), each isomorphic to G, such that for every pair of distinct vertices x,y ∈ X, there exist exactly λ graphs of B having the pair {x,y} as an edge. A G-design is also called a G-decomposition of λK_v. In the literature of Design Theory there is a lot of papers about the concept of nesting. In this paper we give a survey about nesting in G-designs and their recent generalizations, recalling the definitions in historical order. At last, we give a list of interesting 50 open problems.

In what follows, we will denote by C_m a cycle with m vertices, by S_m a star having a center and m pendant vertices and by K_v the complete graph with v vertices.
2 Nesting

If \(\Sigma = (X, C) \) is a \(C_m \)-design of order \(v \) and index one, a nesting of \(\Sigma \) is a mapping \(\varphi: C \rightarrow X \) such that the collection of all the stars

\[
\Pi = \{ \{x, \varphi(c)\} : c \in C, x \in c, \varphi(c) \notin c \}
\]

is an \(S_m \)-design, i.e. an \(S_m \)-partition of \(K_v \).

This definition of nesting was first introduced for \(C_m \)-designs by C.C.Lindner, C.Rodger, C.Colbourn, and R.Stinson, and was studied by many authors. At first, it was examined the determination of the spectrum of \(C_m \)-designs having a nesting for \(m = 3 \) in [8] and after in [19,20], where 15 possible exceptions remained. In [24,25] the author completed the spectrum, studying also the case \(m = 5 \).

3 L-Nesting and LG-nesting

Observe that the definition above requires that to determine a nesting for a \(G \)-design, where \(G = (V, E) \), it is necessary that \(|V| = |E| \).

A generalization of nesting for \(G \)-designs that required \(|V| \geq |E| \) was introduced by S.Milici and G.Quattrocchi in [22,23].

The following is a new and more general definition of nesting, introduced by L.Gionfriddo in [9,10], in which there are no restrictions between the number of vertices and the number of edges of graph \(G \). We will call it \(L \)-nesting for \(G \)-designs.

Definition 1: Let \(G=(V_G, E_G) \), \(H=(V_H, E_H) \) be two graphs and let \(\Sigma = (X, B) \) be a \(G \)-design of index \(\lambda \). A nesting \(N(G, H; \lambda, \mu) \) of \(\Sigma \) is a triple \(N=(\Sigma, \Pi, F) \), where \(\Pi=(V_H, S) \) is an \(m \)-star-design of index \(\mu \) and \(F: B \rightarrow S \) is a bijection such that:

1. for every \(B \in B \), the center of the \(m \)-star \(F(B) \) is not a vertex of \(B \);
2. for every \(B \in B \), \(x \) is a terminal vertex of \(F(B) \) if and only if \(x \) is a vertex of \(B \);
3. for every pair of blocks \(B_1, B_2 \in B \), the graphs \(B_1 \cup F(B_1) \) and \(B_2 \cup F(B_2) \) are isomorphic.

If \(H \) is isomorphic to \(K_v \), then the nesting will be denoted by \(N(G, v; \lambda, \mu) \).

Example 1: If by \([x; x_1,x_2,..., x_k] \) we denote the union-graph between the path \(P_k \) having vertices \(x_1,x_2,...,x_k \) and edges \(\{x_1,x_2\},\{x_2,x_3\},...,\{x_{k-1},x_k\} \) and
the star having center \(x \) and terminal vertices \(x_1, x_2, \ldots, x_k \), then the design defined on \(\mathbb{Z}_5 \) having for blocks \(\{ j; j+1, j+2, j+3, j+4 \} \), \(\{ j; j+2, j+4, j+1, j+3 \} \) for every \(j = 0, 1, 2, 3, 4 \), is the nesting \(N(P_4; 5, 3, 4) \).

Some necessary conditions follow.

Theorem 3.1 Let \(G = (V, E) \) be a graph and \(\Sigma = (X, B) \) be a \(G \)-design of index \(\lambda \). If there exists an \(N(G; n; \lambda, \mu) \), then \(\lambda \cdot |V| = \mu \cdot |E| \).

Theorem 3.2 For a nested design \(N(P_k; n; \lambda, \mu) \), necessarily:

i) \(\lambda = (k - 1) \cdot \rho \) and \(\mu = k \cdot \rho \) for some \(\rho \in \mathbb{N} \);

ii) if \(n = k + 1 \), then \(k \cdot \rho \) is an even number.

The following results about \(L \)-nesting for \(P_k \)-designs have been obtained in [9].

Theorem 3.3 Let \(k \) be an integer, \(k > 1 \). For every prime number \(n > k \), there exists a nested design \(N(P_k; n; \lambda, \mu) \).

Theorem 3.4 For every prime number \(n \in \mathbb{N} \) and for every graph \(G = (V, E) \) containing a hamiltonian path, there exists a nested \(G \)-design \(N(G; n; \lambda, \mu) \) with \(\lambda = |E|, \mu = |V| \).

Theorem 3.5

1. For any prime number \(n \in \mathbb{N} \), there exists a nested design \(N(K_k; n; \lambda, \mu) \) with \(\lambda = \binom{k}{2}, \mu = k \).

2. There exists a nested design \(N(G; n; \nu_1, \nu_2) \), where \(G \) is a spanning subgraph of \(K_k \) and \(\nu_1 = |E|, \nu_2 = |V| = k \).

Theorem 3.6 If there exists a nested design \(N(C_m; n; 1, 1) \), then for every \(k, 3 \leq k < m \), there exists a nested design \(N(P_k; n; 1, 1) \).

In [11] the following concept was introduced.

Definition 2: Let \(G = (V, E) \) be a graph and let \(\Sigma = (X, B) \) be a \(G \)-design of index \(\lambda_1 \) and order \(n \). Let \(h \) be an integer such that: \(1 \leq h \leq n - |V| \).

The \(LG(1) \)-nesting of \(\Sigma \) is the nesting \(N_1 = N(G; n; \lambda_1, \mu_1) = (\Sigma, \Pi, F) \) introduced in Definition 1.

Let \(G_1 = G, \Pi_1 = \Pi, F_1 = F \). For \(h \geq 2 \) the \(LG(h) \)-nesting of \(\Sigma \) is the nesting \(N_h = (\Sigma_h, \Pi_h, F_h) \) of \(\Sigma_h = N(G_{h-1}; n; \lambda_{h-1}, \mu_{h-1}) \).

We say such a nesting \(LG(h) \)-nesting.
We precise that in what follows, if $B \in \mathcal{B}$ and x is the centre of $F(B)$, we will write $[x; B]$ instead of $B \cup F(B)$.

Results:

Theorem 3.7 - Let $G_1=(V_1,E_1)$ be a graph and let $\Sigma_1 = (X, B_1)$ be a G_1-design of index λ_1. A necessary condition for the existence of a $N(G_h,n; \lambda_h, \mu_h)$, for $h = 1, 2, \ldots, n - |V_1|$, is that for every $i = 1, 2, \ldots, h$: $\lambda_i \cdot (|V_1 + i - 1|) = \mu_i \cdot (|E_1 + (i - 1) \cdot (|V_1| + \frac{i-2}{2}))$.

Theorem 3.8 Let $N=(\Sigma, \Pi, F)$ be a nested design $N(P_k,n; \lambda, \mu)$. Then, necessarily:

i) $\lambda_1 = (k - 1) \cdot \rho, \quad \mu_1 = k \cdot \rho$, for some positive integer ρ;

ii) if $n = k + 1$, then $k \cdot \rho$ is an even number.

Theorem 3.9 Let k be an integer, $k>1$. For every prime number n, $n > k$, there exists an $LG(h)$-nested design $N(P_k,n; \lambda_h, \mu_h)$, for every h such that: $1 \leq h \leq n - |V(G)|$.

For other details see [11].

4 Multinesting

In [2,3,4] the following general definition of nesting is given.

Definition 3: Let $G_1=(V_1,E_1)$, $G_2=(V_2,E_2)$, $G=(V,E)$ be graphs, with G_1, G_2 subgraphs of G such that E_1 and E_2 form a partition of E. Further, let $\Sigma = (X, B)$ be a G-design of index λ. A nesting $N(G,G_1; \lambda, \mu)$ of Σ is a pair $N=(\Sigma, \Pi)$, where $\Pi=(X, B_1)$ is a G_1-design of index μ having for blocks all the G_1 graphs obtained from the blocks of Σ taking for everyone the subgraph isomorphic to G_1.

Observe that there exists a bijection F: $\mathcal{B} \rightarrow \mathcal{B}_1$ which associates with every block of Σ the correspondent subgraph block of Π. Further, also the subgraphs G_2 of the blocks of Σ form a G_2-design of index $\lambda - \mu$.

Often, in the situation seen above, Σ is said to be G_1-perfect [2,3,4,18,21].

Similarly, it is possible to consider multinestings [15].
Definition 4: Let \(G_1=(V_1,E_1), G_2=(V_2,E_2), \ldots, G_k=(V_k,E_k), G=(V,E) \) be graphs, with \(G_1, G_2, \ldots, G_k \) subgraphs of \(G \), such that \(E_1, E_2, \ldots, E_k \) have no edges in common. Let \(\Sigma=(X,B) \) be a \(G \)-design of index \(\lambda \). A multinesting \(N(G,G_1,\ldots,G_k;\lambda,\mu_1,\ldots,\mu_k) \) of \(\Sigma \) is an ordered collection \(N=(\Sigma,\Pi_1,\ldots,\Pi_k) \), where for every \(i=1,2,\ldots,k \), \(\Pi_i=(X,B_i) \) is a \(G_i \)-design of index \(\mu_i \), having for blocks all the \(G_i \) graphs obtained from the blocks of \(\Sigma \) taking for everyone the subgraph isomorphic to \(G_i \).

Observe that, also in these cases, there exist \(k \) bijections \(F_1,F_2,\ldots,F_k \), \(F_i: B \to B_i \), for every \(i=1,2,\ldots,k \), which associate with every block of \(\Sigma \) the correspondent subgraph block of \(\Pi_i \).

4.1) - The case of Octagon Quadrangle System

An octagon quadrangle \(OQ \) is a graph \(G=(V,E) \), having vertex-set \(V=\{x_1,x_2,\ldots,x_8\} \), and edge-set

\[
E = \{\{x_i,x_{i+1}\} : i = 1,2,\ldots,7\} \cup \{\{x_1,x_8\}, \{x_1,x_4\}, \{x_5,x_8\}\}.
\]

In other words, \(OQ \) is the graph obtained from a cycle of length eight adding two parallel edges which divide the octagon in three quadrangles. Such a graph will be denoted by \([x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8]\). The cycle \((x_1,x_4,x_5,x_8)\) will be the inside \(C_4 \)-cycle, while the cycle \((x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8)\) will be the outside cycle [2].

An octagon quadrangle system of order \(v \) and index \(\lambda \), briefly an \(OQS(v) \), is a pair \(\Sigma=(X,B) \), where \(X \) is a finite set of \(v \) vertices and \(B \) is a collection of edge disjoint octagon quadrangles, called blocks, which partitions the edge set of \(\lambda K_v \), defined on the vertex set \(X \).

Following the definitions given above, an octagon quadrangle system \(\Sigma=(X,B) \) of order \(v \) and index \(\lambda \) is said to be:

1) \(C_4 \)-perfect, if all of the inside \(C_4 \)-cycles contained in the octagon quadrangles form a \(\mu \)-fold 4-cycle system of order \(v \);

2) \(C_8 \)-perfect, if all of the outside \(C_8 \)-cycles contained in the octagon quadrangles form a \(\varrho \)-fold 8-cycle system of order \(v \);

3) strongly perfect, if the collection of all of the inside \(C_4 \)-cycles contained in the octagon quadrangles form a \(\mu \)-fold 4-cycle system of order \(v \) and the collection of all of the outside \(C_8 \)-cycles contained in the octagon quadrangles
form a ϱ-fold 8-cycle system of order v.

In the first two cases, we say that the system has indices (λ, μ) or (λ, ϱ) respectively, in the third case we say that the system has indices (λ, ϱ, μ). Also, in i) the C_4-system is nested in the OQS, in ii) the C_8-system is nested in the OQS, in both cases the OQS is nesting the C_4-system and the C_8-system.

In the following examples there are OQSs of different types. The vertex set is always Z_v. The collection \mathcal{B} of octagon quadrangles is given by a set of base blocks. If $B^* = [(a, b, c, (d), (\alpha), (\beta, \gamma, (\delta))]$ is a base block, then $B^*_i = [(a + i), b + i, c + i, (d + i), (\alpha + i), (\beta + i, \gamma + i, (\delta + i)]$ is a block of B, for each $i = 1, 2, ..., v \in Z_v$. B^*_i is said to be a translated block of B^*.

Example 2: The following blocks define a strongly perfect OQS(13) of indices $(5,4,2)$. The inside C_4-cycles form a C_4-system of index $\mu = 2$ and the outside C_8-cycles form a C_8-system of index $\varrho = 4$.

Base blocks (mod 13):

\[[(0), 5, 9, (3), (7), 4, 2, (1)],\]
\[[(0), 10, 5, (1), (7), 6, 8, (2)],\]
\[[(0), 6, 10, (2), (7), 4, 5, (3)].\]

Example 3: The following blocks define a C_4-perfect OQS(13) of indices $(5,2)$. The inside C_4-cycles form a C_4-system of index $\mu = 2$; the outside C_8-cycles do not form a C_8-system.

Base blocks (mod 13):

\[[(1), 9, 11, (2), (5), 3, 7, (8)],\]
\[[(3), 4, 0, (10), (5), 11, 8, (1)],\]
\[[(8), 0, 6, (9), (1), 2, 10, (12)].\]

Example 4: The following blocks define a C_8-perfect OQS(13) of indices $(5,4)$. The outside C_8-cycles form a C_8-system of index $\varrho = 4$; the inside C_4-cycles do not form a C_4-system.

Base blocks (mod 13):

\[[(0), 8, 10, (1), (4), 2, 6, (7)].\]
Example 5: The following blocks define an OQS(13) of index $\lambda = 5$. It is not perfect. The outside C_8-cycles do not form a C_8-system and the inside C_4-cycles do not form a C_4-system.

Base blocks (mod 13):

\[
[(0), 10, 4, (1), 6, 7, 8, (4)],$

\[
[(2), 8, 5, (3), 1, 10, 9, (4)],$

\[
[(3), 5, 11, (6), 1, 8, 12, (7)].$

In [2,4] the spectrum is determined for many classes of OQSs, as we can see in what following. This research follows the results found in [12,13] for hexagon quadrangle systems and hexagon kite systems.

Theorem 4.1: There exist strongly perfect OQS(v)s of indices (5, 4, 2) if and only if $v \equiv 0$ or 1 mod 8, $v \geq 8$.

Theorem 4.2: There exist OQS(v)s of indices (5, 2), which are C_4-perfect but not C_8-perfect, if and only if $v \equiv 0$ or 1 mod 8, $v \geq 8$.

Theorem 4.3: There exist OQS(v)s of indices (5, 4), which are C_8-perfect but not C_4-perfect, if and only if $v \equiv 0$ or 1 mod 8, $v \geq 8$.

Theorem 4.4: There exist OQS(v)s of index 5, which are neither C_4-perfect nor C_8-perfect, if and only if $v \equiv 0$ or 1 mod 8, $v \geq 8$.

4.2) - A case of Multinesting

For Octagon Quadrangle Systems there are also the following definitions. An OQS $\Sigma = (X, B)$ of order v and index λ is said to be [3]:

4) upper C_4-perfect, if all of the upper C_4-cycles contained in the octagon quadrangles form a μ_1-fold 4-cycle system of order v;
5) **lower C\textsubscript{4}-perfect**, if all of the lower C\textsubscript{4}-cycles contained in the octagon quadrangles form a \(\mu_2\)-fold 4-cycle system of order \(v\);

6) **super-perfect**, if \(\Sigma\) is upper, lower and outside perfect and in this case we say also that \(\Sigma\) is a **total nesting system**.

In every case, the system \(\Sigma'\) contained in \(\Sigma\) is said to be **nested** in it and \(\Sigma\) is said **nesting** \(\Sigma'\).

We give some examples. In them the vertex set is always \(Z_v\) or \(Z_{v-1}\cup\{\infty\}\). We use **base blocks** and the symbol \(\infty\), with the condition that \(\infty + i = \infty\), for every positive integer \(i\).

Example 6: The following blocks define an \(OQS(17)\) of indices \((5,4,2)\), which is upper-C\textsubscript{4} perfect and C\textsubscript{8} perfect. We can see that the upper C\textsubscript{4}-cycles form a \(C_4\)-system of index \(\mu = 2\) and the outside C\textsubscript{8}-cycles form a \(C_8\)-system of index \(\varphi = 4\). Observe that the lower C\textsubscript{4}-cycles do not form a \(C_4\)-system, this \(OQS\) is **not strongly perfect**.

Base blocks (mod 17):

\[
[(0), 14, 15, (6), (12), 7, 5, (13)],

[(0), 13, 1, (8), (10), 9, 11, (7)],

[(0), 13, 1, (2), (11), 4, 16, (6)],

[(0), 3, 9, (7), (10), 2, 5, (6)].
\]

Example 7: The following blocks define a **super-perfect** \(OQS(13)\) of indices \((5,4,2)\). The upper C\textsubscript{4}-cycles form a \(C_4\)-system of index \(\mu = 2\); the lower C\textsubscript{4}-cycles form another \(C_4\)-system of index \(\mu = 2\); the outside C\textsubscript{8}-cycles form a \(C_8\)-system of index \(\varphi = 4\). There are three cycles-systems nested in this \(OQS(13)\).

Base blocks (mod 13):

\[
[(0), 3, 10, (1), (7), 9, 4, (2)],

[(0), 1, 10, (2), (7), 8, 4, (3)],

[(0), 2, 10, (3), (7), 4, 11, (1)].
\]

Example 8: Let \(\Sigma = (Z_9, \mathcal{B})\) be the system defined in \(Z_9\) whose blocks are
all the translates obtained by the following:

Base blocks (mod 9):

\[(0, 1, 5, 7, 4, 3, 6, 8),
(3, 0, 5, 2, 4, 8, 6, 7)\].

We can verify that \(\Sigma\) is a **super-perfect OQS(9)** of indices (5,4,2,2). The **upper** \(C_4\)-system is generated by the two base 4-cycles:

\[(0, 1, 5, 7), (3, 0, 5, 2)\].

The **lower** \(C_4\)-system is generated by the two base 4-cycles:

\[(4, 3, 6, 8), (4, 8, 6, 7)\].

Example 9: Let \(\Sigma = (X, B)\) be the system defined in \(X = \mathbb{Z}_7 \cup \{\infty\}, \infty \notin \mathbb{Z}_7\), whose blocks are all the translates obtained by the following:

Base blocks (mod 7):

\[(\infty, 5, 6, 3, 2, 0, 1, 4),
(1, 0, 2, 4, 6, 3, \infty, 5)\],

where \(\infty\) is a fixed vertex and all the others are obtained cyclically in \(\mathbb{Z}_7\). We can verify that \(\Sigma\) is a **super-perfect OQS(8)** of indices (5,4,2,2). The **upper** \(C_4\)-system is generated by the two base 4-cycles:

\[(\infty, 5, 6, 3), (1, 0, 2, 4)\].

The **lower** \(C_4\)-system is generated by the two base 4-cycles:

\[(2, 0, 1, 4), (\infty, 5, 6, 3)\].

Example 10: Let \(\Sigma = (X, B)\) be the system defined in \(X = \mathbb{Z}_{11} \cup \{\infty\}, \infty \notin \mathbb{Z}_{11}\), whose blocks are all the translated one obtained by the following:

Base blocks (mod 11):

\[(\infty, 10, 8, 5, 6, 7, 9, 1),
(0, 3, 8, 1, 6, 7, 9, 2),
(0, 1, 8, 2, 10, 5, \infty, 7)\],

where \(\infty\) is a fixed vertex and all the others are obtained cyclically in \(\mathbb{Z}_{11}\). We can verify that \(\Sigma\) is a **super-perfect OQS(12)** of indices (5,4,2,2). The **upper** \(C_4\)-system is generated by the 4-cycles:
The lower C_4-system is generated by the 4-cycles:
$(1,6,7,9), (2,6,7,9), (∞, 7, 10, 5)$.

The following are the main results obtained in [15] about multnestings in OQS, also called super-perfect OQS.

Theorem 4.5: There exist super-perfect $OQS(v)$ of indices $(5,4,2,2)$ if and only if $v ≡ 0$ or 1 mod 4, $v ≥ 8$.

Theorem 4.6: For every $v ≡ 0$ or 1 mod 4, $v ≥ 8$, there exist OQSs of order v and index 5 nesting two C_4-systems of index 2 and a complete graph K_v.

Theorem 4.7: For every $v ≡ 1$ mod 8, $v ≥ 9$, there exist OQSs of order v and index 5 nesting a C_4-system of index 5 decomposable into two C_4-systems of index 2 and a C_4-system of index one.

4.3) - The case of Dodecagon Quadrangle Systems

A dodecagon quadrangle is a graph $G = (V, E)$, having vertex-set $V = \{x_1, x_2, ..., x_{12}\}$ and edge-set

$$E = \{\{x_i, x_{i+1}\} : i = 1, 2, ..., 11\} \cup \{\{x_1, x_{12}\}, \{x_1, x_4\}, \{x_4, x_7\}, \{x_7, x_{10}\}, \{x_1, x_{10}\}\}$$

and it will be denoted by $[(x_1), x_2, x_3, (x_4), x_5, x_6, (x_7), x_8, x_9, (x_{10}), x_{11}, x_{12}]$.

A dodecagon quadrangle system of order v and index ρ, briefly a DQS, is a pair (X, \mathcal{H}), where X is a finite set of v vertices and \mathcal{H} is a collection of edge disjoint dodecagon quadrangles (called blocks) which partitions the edge set of ρK_v, with vertex set X.

A dodecagon quadrangle system (X, \mathcal{H}) of order v and index ρ is said to be perfect, briefly a $PDQS$ if the collection of all of the inside 4-cycles contained in the dodecagon quadrangles form a μ-fold 4-cycle system of order v. Usually, this μ-fold 4-cycle system is also said nested in the DQS (X, \mathcal{H}) [14].

We can observe that in a $PDQS$ the inside 4-cycles contained in the blocks form a 4-cycle system which is nested in the DQS.

In the following examples the vertex set is always Z_{33}.

Example 11: The following system is a $DQS(33)$ of index one, but it is not a PDQS.
Base block (mod 33):

\[[(0), 11, 21, (1), 7, 14, (18), 6, 8, (3), 17, 9]. \]

Example 12: The following system is a \(PDQS(33) \) having index four. The inside 4-cycle system has index one.

Base blocks (mod 33):

\[[(0), 32, 7, (1), 4, 20, (17), 18, 31, (8), 13, 29], \]
\[[(0), 20, 11, (2), 13, 9, (17), 24, 31, (7), 8, 19], \]
\[[(0), 14, 29, (3), 7, 9, (17), 5, 11, (6), 28, 31], \]
\[[(0), 16, 22, (4), 9, 19, (17), 30, 15, (5), 26, 14]. \]

In [14] it is determined completely the spectrum of \(DQSs \) and the spectrum of \(PDQSs \).

Results:

Theorem 4.8: There exists a \(DQS \) of order \(v \) and index one if and only if \(v \equiv 1 \mod 32, n \geq 33 \).

Theorem 4.9: There exists a \(PDQS \) of order \(v \) and minimum index if and only if \(v \equiv 1 \mod 8, v \geq 17 \).

To prove these Theorems, the following interesting constructions are used:

1) **Construction** \(v \to v + 32 \) for \(DQSs \)

Let \(Z_{9,i} = Z_9 \times \{i\} \), for \(i=1, 2, \ldots, 4k, a, b, c, d \) (all distinct elements), where \((0, i) = 0 \) for every \(i=1, 2, \ldots, 4k, a, b, c, d \). Further, let \((x, i) = x_i \). Let \((A, S_1) \) be a \(DQS(v) \) of order \(v = 32k + 1, v \geq 33 \) and let \((B, S_2) \) be a \(DQS(33) \) of order 33, where:

\[A = \bigcup_{i=1}^{4k} Z_{9,i}, \text{ and } \]
\[B = \bigcup_{i=1}^{4k} Z_{9,i}. \]
Define in \(A \cup B \) the family \(\mathcal{H}^* \) of dodecagon quadrangles such that: \(\mathcal{H}_1 \subseteq \mathcal{H}^* \), \(\mathcal{H}_2 \subseteq \mathcal{H}^* \).

Further, for every \(i=1, 2, \ldots, 4k \) and for every \(j=a, b, c, d \), if:

\[
\Phi(1)_{i,j} = \{[(1_j), 5_i, 7_j, (3_i), 8_j, 7_i, (2_j), 6_i, 4_j, (1_i), 3_j, 2_i]\}
\]

\[
\Phi(2)_{i,j} = \{[(3_j), 6_i, 1_j, (4_i), 2_j, 2_i, (4_j), 8_i, 6_j, (3_i), 5_j, 5_i]\}
\]

\[
\Phi(3)_{i,j} = \{[(3_j), 4_i, 5_j, (6_i), 6_j, 2_i, (4_j), 5_j, 2_j, (8_i), 1_j, 7_i]\}
\]

\[
\Phi(4)_{i,j} = \{[(5_j), 8_i, 3_j, (7_i), 4_j, 5_i, (6_j), 4_i, 8_j, (1_i), 7_j, 2_i]\}
\]

then:

\[
\Phi(1)_{i,j} \subseteq \mathcal{H}^*, \Phi(2)_{i,j} \subseteq \mathcal{H}^*,
\]

\[
\Phi(3)_{i,j} \subseteq \mathcal{H}^*, \Phi(4)_{i,j} \subseteq \mathcal{H}^*.
\]

If \(X = A \cup B \) and \(\mathcal{H}^* = \mathcal{H}_1 \cup \mathcal{H}_2 \cup \Phi(1)_{i,j} \cup \Phi(2)_{i,j} \cup \Phi(3)_{i,j} \cup \Phi(4)_{i,j} \) then, examining by difference methods that every pair of distinct elements of \(X \) is contained in exactly one dodecagon quadrangle of \(\mathcal{H}^* \), it is straightforward to verify that \((X, \mathcal{H}^*)\) is a DQS of order \(v + 32 \).

We observe that the number of blocks of \(\mathcal{H}^* \), counting \(\Phi(u)_{i,j} \) for every \(i=1, 2, \ldots, 4k \) and for every for every \(j=a, b, c, d \), is:

\[
|\mathcal{H}^*| = |\mathcal{H}_1| + |\mathcal{H}_2| + |\Phi(1)_{i,j}| + |\Phi(2)_{i,j}| + |\Phi(3)_{i,j}| + |\Phi(4)_{i,j}| =
\]

\[
\left(\frac{32k+1}{16}\right) + \left(\frac{33}{3}\right) + 64k = 32k^2 + 65k + 33,
\]

which is exactly the number of blocks of a DQS(32k + 33):

\[
\left(\frac{32k+33}{16}\right) = 32k^2 + 65k + 33,
\]

and the construction is completed. \(\square \)

2) Construction \(v \rightarrow v + 16 \) for PDQSs

Let \(Z_{4k,i} = Z_{4k} \times \{i\}, i=1,2 \), and let \(Z_{8,j} = Z_8 \times \{j\}, j=a,b \). Further, let \((x, i) = x_i \).

Let \((A, H_1)\) be a PDQS\((v)\) of order \(v = 8k + 1 \), \(v \geq 17 \), and let \((B, H_2)\) be a
PDQS(17) of order 17, where:

\[A = Z_{4k,1} \cup Z_{4k,2} \cup \{\infty\} \quad \text{and} \quad B = Z_{8,a} \cup Z_{8,b} \cup \{\infty\}. \]

Define on \(A \cup B \) the family \(\mathcal{H}^* \) of dodecagon quadrangles such that: \(\mathcal{H}_1 \subseteq \mathcal{H}^* \), \(\mathcal{H}_2 \subseteq \mathcal{H}^* \). Further, for every \(i \in \mathbb{Z}_{4k} \), let:

\[
\begin{align*}
\Delta(1)_a &= \{[(i + 1)_1, 4_a, (i + 2)_1, (2_a), (i + 2)_2, 8_a, ((i + 1)_2), 7_a, (i + 3)_2, (1_a), (i + 3)_1, 3_a]\}, \\
\Delta(2)_a &= \{[(i + 1)_1, 6_a, (i + 2)_1, (4_a), (i + 2)_2, 2_a, ((i + 1)_2), 1_a, (i + 3)_2, (3_a), (i + 3)_1, 5_a]\}, \\
\Delta(3)_a &= \{[(i + 1)_1, 8_a, (i + 2)_1, (6_a), (i + 2)_2, 4_a, ((i + 1)_2), 3_a, (i + 3)_2, (5_a), (i + 3)_1, 7_a]\}, \\
\Delta(4)_a &= \{[(i + 1)_1, 2_a, (i + 2)_1, (8_a), (i + 2)_2, 6_a, ((i + 1)_2), 5_a, (i + 3)_2, (7_a), (i + 3)_1, 5_a]\}, \\
\Delta(1)_b &= \{[(i + 1)_1, 4_b, (i + 2)_1, (2_b), (i + 2)_2, 8_b, ((i + 1)_2), 7_b, (i + 3)_2, (1_b), (i + 3)_1, 3_b]\}, \\
\Delta(2)_b &= \{[(i + 1)_1, 6_b, (i + 2)_1, (4_b), (i + 2)_2, 2_b, ((i + 1)_2), 1_b, (i + 3)_2, (3_b), (i + 3)_1, 5_b]\}, \\
\Delta(3)_b &= \{[(i + 1)_1, 8_b, (i + 2)_1, (6_b), (i + 2)_2, 4_b, ((i + 1)_2), 3_b, (i + 3)_2, (5_b), (i + 3)_1, 7_b]\}, \\
\Delta(4)_b &= \{[(i + 1)_1, 2_b, (i + 2)_1, (8_b), (i + 2)_2, 6_b, ((i + 1)_2), 5_b, (i + 3)_2, (7_b), (i + 3)_1, 5_b]\}.
\end{align*}
\]

Then:

\[\Delta(1)_a \subseteq \mathcal{H}^*, \Delta(2)_a \subseteq \mathcal{H}^*, \Delta(3)_a \subseteq \mathcal{H}^*, \Delta(4)_a \subseteq \mathcal{H}^*, \quad \text{and} \]

\[\Delta(1)_b \subseteq \mathcal{H}^*, \Delta(2)_b \subseteq \mathcal{H}^*, \Delta(3)_b \subseteq \mathcal{H}^*, \Delta(4)_b \subseteq \mathcal{H}^*. \]

If \(X = A \cup B \) and
\[H^* = H_1 \cup H_2 \cup \Delta(1)_a \cup \Delta(2)_a \cup \Delta(3)_a \cup \Delta(4)_a \cup \Delta(1)_b \cup \Delta(2)_b \cup \Delta(3)_b \cup \Delta(4)_b \]

then, examining by difference methods that every pair of distinct elements of \(X \) is contained in exactly four \textit{dodecagon quadrangles} of \(H^* \) and that the \textit{inside} 4-cycles form a 4-cycle system of the same order and index one, it is straightforward to verify that \((X, H^*)\) is a \textit{PDQS} of order \(v + 16 \) and index four (minimum possible).

We observe that the number of blocks of \(H^* \) is:

\[
|H|^* = |H_1| + |H_2| + |\Delta(1)_a| + |\Delta(2)_a| + |\Delta(3)_a| + |\Delta(4)_a| + |\Delta(1)_b| + |\Delta(2)_b| + |\Delta(3)_b| + |\Delta(4)_b| = \left(\frac{8k + 1}{2} \right) 4 + \left(\frac{17}{16} \right) 4 + 32k = 8k^2 + 33k + 34,
\]

which is exactly the number of blocks of a \textit{PDQS} \((8k + 17)\) of index four:

\[
\left(\frac{8k + 17}{16} \right) 4 = 8k^2 + 33k + 34,
\]

and the construction is completed.

These constructions, with the existence of \textit{DQS} of order 33 given in Example 5 and the existence of \textit{PDQS} given in Example 6, permit to determine the spectrum of \textit{DQSs} and \textit{PDQSs}.

\section{5 50 Open research problems}

\textbf{Octagon quadrangle systems OQSs:}

1.) In \([2,3,4]\) the spectrum of \textit{octagon quadrangle systems} \textit{OQSs} and the spectrum of \textit{perfect OQSs} are determined. Examine the possible embedding of a \(C_4\)-design of index \(\mu = 1 \) into an \textit{OQS} of index \(\lambda = 1 \), as collection of \textit{inside} \(C_4\)-cycles.

2.) Determine a relation between the order \(n \) of a \(C_4\)-design embedded into an \textit{OQS} and the order \(v \) of the \textit{OQS}.

3.) Determine the minimum value of \(v \) so that there exists a \(C_4\)-design of order \(n \) and index 1, embedded in an \textit{OQS} of order \(v \) and index 1.

4.) Examine the same problems described in the previous last points, under the condition \(1 < \mu \leq \lambda \) or also \(\mu = 1 < \lambda \).
5.) The necessary condition so that a C_4-design, of order v and index μ, can be nested into an OQS, of order v and index λ, is that $2 \cdot \lambda = 5 \cdot \mu$. Is it true that every C_4-design, of order v and index $\mu = 2$, can be nested into an OQS of order v and index $\lambda = 5$?

6.) Consider the same problem in 5) for $\mu = 4$ and $\lambda = 10$. Observe that, for these values, the correspondent spectrum is the largest possible.

7.) In [3][15], upper C_4-perfect OQSs, lower C_4-perfect HQSs and superperfect OQSs as are considered. Examine the possible embedding of a C_4-design of index $\mu = 1$ into an OQS of index $\lambda = 1$, as collection of lateral C_4-cycles, where lateral means that C_4-cycles are upper or lower.

8.) Determine a relation between the order n of a C_4-design lateral-embedded into an OQS and the order v of the OQS.

9.) Determine the minimum value of v such that there exists a C_4-design of order n and index $\mu = 1$, lateral-embedded into an OQS of order v and index $\lambda = 1$.

10.) Examine the same problems described in the previous last points, under the condition $1 < \mu \leq \lambda$ or also $\mu = 1 < \lambda$.

11.) Is it true that every C_4-design, of order v and index $\mu = 2$, can be nested as lateral-C_4-design, into an OQS of order v and index $\lambda = 5$?

12.) Consider the same problem in 11) for $\mu = 4$ and $\lambda = 10$.

Hexagon quadrangle systems HQSs:

13.) In [12] the spectrum of HQSs and the spectrum of perfect HQSs have been determined. Examine the possible embedding of a C_4-design of index $\mu = 1$ into an HQS of index $\lambda = 1$, as collection of inside C_4-cycles.

14.) Determine a relation between the order n of a C_4-design embedded into an HQS and the order v of the HQS.

15.) Determine the minimum value of v so that there exists a C_4-design of order n and index $\mu = 1$, embedded in an HQS of order v and index $\lambda = 1$.

16.) Examine the same problems described in the previous last points, under the condition $1 < \mu \leq \lambda$ or also $\mu = 1 < \lambda$.
17.) The necessary condition so that a \(C_4 \)-design, of order \(v \) and index \(\mu \), can be nested into an HQS, of order \(v \) and index \(\lambda \), is that \(\lambda = 2 \cdot \mu \). Is it true that every \(C_4 \)-design, of order \(v \) and index \(\mu = 1 \), can be nested into an HQS of order \(v \) and index \(\lambda = 2 \) ?

18.) Consider the same problem of 17) for: \((\lambda, \mu) = (4, 2), (\lambda, \mu) = (6, 3)\) and for \((\lambda, \mu) = (8, 4)\). Observe that, in this last case, the correspondent spectrum is the largest possible.

19.) Define upper \(C_3 \)-perfect HQSs, lower \(C_3 \)-perfect HQSs and superperfect HQSs as in \([3][15]\). Examine the possible embedding of a \(C_3 \)-design of index \(\mu = 1 \) into an HQS of index \(\lambda = 1 \), as collection of lateral \(C_3 \)-cycles, where lateral means that \(C_3 \)-cycles are upper or lower.

20.) Consider lateral \(C_3 \)-perfect HQSs, as in section 4.2 and \([14]\), and determine the spectrum.

21.) Examine the possible embedding of a \(C_3 \)-design of index 1 in an HQS of index 1, as collection of lateral \(C_3 \)-cycles.

22.) Determine a relation between the order \(n \) of a \(C_3 \)-design embedded into an HQS and the order \(v \) of the HQS.

23.) Determine the minimum value of \(v \) such that there exists a \(C_3 \)-design of order \(n \) and index 1, embedded in an HQS of order \(v \) and index 1.

24.) Examine the same problems described in the previous last points, under the condition \(1 < \mu \leq \lambda \) or also \(\mu = 1 < \lambda \).

25.) The necessary condition so that a \(C_3 \)-design, of order \(v \) and index \(\mu \), can be nested into an HQS, of order \(v \) and index \(\lambda \), is that \(3 \cdot \lambda = 8 \cdot \mu \). Is it true that every \(C_3 \)-design, of order \(v \) and index 3, can be nested as lateral \(C_3 \)-design, into an HQS of order \(v \) and index 8 ?

Dodecagon quadrangle systems DQSs:

26.) In \([14]\) the spectrum of dodecagon quadrangle systems DQSs and perfect DQSs is determined. Examine the possible embedding of a \(C_4 \)-design of index 1 in a DQS of index 1, as collection of inside \(C_4 \)-cycles.

27.) Determine a relation between the order \(n \) of a \(C_4 \)-design embedded into a DQS and the order \(v \) of the DQS.
28.) Determine the minimum value of \(v \) such that there exists a \(C_4 \)-design of order \(n \) and index 1, embedded in a \(DQS \) of order \(v \) and index 1.

29.) Examine the same problems described in the previous last points, under the condition \(1 < \mu \leq \lambda \) or also \(\mu = 1 < \lambda \).

30.) Is it true that every \(C_4 \)-design, of order \(v \) and index 1, can be nested into a perfect \(DQS \) of order \(v \) and index 4?

Remark: Observe that for hexagon triple systems \(HTS \) [18] this is true. Indeed, Lucia Gionfriddo proved that every \(C_3 \)-design, of order \(v \) and index 1, can be nested into a perfect \(HTS \) of order \(v \) and index 3?

31.) Define lateral \(C_4 \)-perfect \(DQSs \) and super-perfect \(DQSs \) as in [15], where lateral means that \(C_4 \)-cycles are not inside. Examine the spectrum in the various cases.

32.) Examine the possible embedding of a \(C_4 \)-design of index \(\mu = 1 \) into a \(DQS \) of index \(\lambda = 1 \), as collection of lateral \(C_4 \)-cycles.

33.) Determine a relation between the order \(n \) of a \(C_4 \)-design lateral-embedded into a \(DQS \) and the order \(v \) of the \(DQS \).

34.) Determine the minimum value of \(v \) such that there exists a \(C_4 \)-design of order \(n \) and index 1, lateral-embedded into a \(DQS \) of order \(v \) and index 1.

35.) Examine the same problems described in the previous last points, under the condition \(1 < \mu \leq \lambda \) or also \(\mu = 1 < \lambda \).

36.) The necessary condition so that a \(C_4 \)-design, of order \(v \) and index \(\mu \), can be nested into a \(DQS \), of order \(v \) and index \(\lambda \), is \(\lambda = 4 \cdot \mu \). Is it true that every \(C_4 \)-design, of order \(v \) and index 1, can be nested as lateral \(C_4 \)-design, into a \(DQS \) of order \(v \) and index 4?

37.) Consider the same problem of 37) for \(\mu = 2 \) and \(\lambda = 8 \), \(\mu = 3 \) and \(\lambda = 12 \) and for \(\mu = 4 \) and \(\lambda = 16 \). Observe that, in this last case, the correspondent spectrum is the largest possible.

L-Nesting and LG-Nesting:

38.) In [9] \(L \)-nesting of \(P_k \)-designs having order a prime number has been studied. Examine the existence of \(L \)-nesting of \(P_k \)-designs having order admissible values of \(v \), in the case that \(v \) is not a prime number.
39.) In [10] the spectrum for L-nesting of G-designs, where G has four non-isolated vertices or less, has been determined. Examine the case in which G with more vertices.

40.) Examine the spectrum for L-nesting of C₄-designs.

41.) Examine the spectrum for L-nesting of C_k-designs, for a given k.

42.) Examine the spectrum for nesting of already nested G-designs for G different from paths P_k.

43.) Examine the possible existence of LG-nesting of P_k-designs for admissible values of n in the case that n is not a prime number.

44.) Examine the spectrum for LG-nesting, starting with cycle C_k.

45.) Examine the spectrum for LG-nesting for graph G different from paths and cycles.

46.) Examine what happens for L-nesting of (K₄ - e)-designs when the order v is an even number.

47.) Examine what happens for L-nesting of (K₄ - e)-designs when the order v is not a prime number.

48.) Examine the existence of L-nesting of P₄-designs in the case that the order is one of the following open cases: 10, 12, 14, 16, 20, 22, 28, 34.

49.) For λ ≡ 3 mod 6, µ ≡ 4 mod 8, examine the possible existence of L-nesting of S₃-designs in the case that the order v is one of the following open cases: v=15,27,39,75,87,135,183,195.

50.) For λ ≡ 0 mod 6, µ ≡ 0 mod 8, examine the possible existence of L-nesting of S₃-designs in the case that the order v is one of the following open cases: v = 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 33, 34, 38, 39, 42, 44, 46, 52, 60, 94, 96, 98, 100, 102, 104, 106, 108, 110, 116, 138, 140, 142, 146, 150, 154, 156, 158, 162, 166, 170, 172, 174, 206, 228.
References

Received: August 4, 2014