Identities of Symmetry for Generalized Higher-Order q-Euler Polynomials under S_3

Dmitry V. Dolgy
Institute of Mathematics and Computer Science
Far Eastern Federal University
690950 Vladivostok, Russia

Yu Seon Jang
Department of Applied Mathematics
Kangnam University
Yongin 446-702, Republic of Korea

Taekyun Kim
Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea

Jong Jin Seo
Department of Applied Mathematics
Pukyong National University
Pusan 698-737, Republic of Korea

Copyright © 2014 Dmitry V. Dolgy, Yu Seon Jang, Taekyun Kim and Jong Jin Seo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study the identities of symmetry for the generalized higher-order q-Euler polynomials in three variable under symmetry group S_3 which are derived from the fermionic p-adic q-integral on \mathbb{Z}_p.
1. Introduction

Let p be a fixed odd prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will, respectively, denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p. Let $| \cdot |_p$ be the normalized p-adic absolute value with $|p|_p = 1/p$ and let q be an indeterminate in \mathbb{C}_p such that $|1 - q|_p < p^{-1/(p-1)}$. The q-analogue of x is defined by $[x]_q = (1 - q^x)/(1 - q)$. Note that $\lim_{q \to 1} [x]_q = x$. Let $f(x)$ be a continuous function on \mathbb{Z}_p. Then the fermionic p-adic integral on \mathbb{Z}_p is defined by Kim to be

$$I_q(-q(f)) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x)(-q)^x,$$

where $[x]_{-q} = (1 - (-q)^x)/(1 + q)$, (see [6, 7, 10, 11]). For $n \geq 1$, by (1), we get

$$q^n \int_{\mathbb{Z}_p} f(x + n) d\mu_{-q}(x) + (-1)^{n-1} \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = [2]_q \sum_{\ell=0}^{n-1} q^\ell f(\ell)(-1)^{n-1-\ell}. \tag{2}$$

In particular, for $n = 1$, we have

$$q \int_{\mathbb{Z}_p} f(x + 1) d\mu_{-q}(x) + \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = [2]_q f(0), \quad \text{(see [6, 7]).} \tag{3}$$

The q-Euler polynomials are defined by Kim to be

$$E_{n,q}(x) = \int_{\mathbb{Z}_p} [y + x]^n d\mu_{-q}(y), \quad (n \geq 0), \quad \text{(see [1 - 18]).} \tag{4}$$

When $x = 0$, $E_{n,q} = E_{n,q}(0)$ are called the q-Euler numbers. For $d \in \mathbb{N}$ with $(d, p) = 1$ and $d \equiv 1 (\text{mod } 2)$, we set

$$\lim_{N} \mathbb{Z}/dp^N\mathbb{Z}, \quad X^* = \bigcup_{0 < a < dp \atop (a, p) = 1} (a + dp\mathbb{Z}_p)$$

and

$$a + dp^N\mathbb{Z}_p = \{ x \in X \mid x \equiv a (\text{mod } dp^N) \},$$

where $a \in \mathbb{Z}$ lies $0 \leq a < dp^N$.

Let χ be a primitive Dirichlet character with conductor $d \in \mathbb{N}$ with $d \equiv 1 (\text{mod } 2)$. Then the generalized q-Euler polynomials attached to χ are defined by Kim to be

$$\int_X \chi(y)[x + y]^n d\mu_{-q}(y) = E_{n,q,\chi}[x], \quad (n \geq 0).$$

When $x = 0$, $E_{n,q,\chi} = E_{n,q,\chi}(0)$ are called the generalized q-Euler numbers attached to χ, (see [6, 7]).
In this paper, we consider the generalized q-Euler polynomials attached to χ and study some symmetric identities for the generalized higher-order q-Euler polynomials in three variables under symmetry group S_3 which are derived from the fermionic p-adic q-integral on \mathbb{Z}_p.

2. SYMMETRY IDENTITIES FOR THE GENERALIZED HIGHER-ORDER q-EULER POLYNOMIALS

For $r \in \mathbb{N}$, let us consider the generalized higher-order q-Euler polynomials attached to χ as follows:

$$\int_X \cdots \int_X \prod_{\ell=1}^r (\chi(x_\ell)) [x_1 + \cdots + x_r + x]_q^n d\mu_q(x_1) \cdots d\mu_q(x_r) = \sum_{n=0}^{\infty} \frac{E_n^{(r)}(x)}{n!} \chi(x), \quad \text{(see [4, 6, 7])},$$

(5)

Thus, by (5), we get

$$\int_X \cdots \int_X \prod_{\ell=1}^r (\chi(x_\ell))[x_1 + \cdots + x_r + x]_q^n d\mu_q(x_1) \cdots d\mu_q(x_r) = E_n^{(r)}(x), \quad (n \geq 0).$$

(6)

When $x = 0$, $E_n^{(r)}(0)$ are called the generalized higher-order q-Euler numbers attached to χ.

Let $w_1, w_2, w_3 \in \mathbb{N}$ with $w_i \equiv 1(\bmod 2), \ (i = 1, 2, 3)$. Then, by (1) and (5), we get

$$\int_X \cdots \int_X \prod_{\ell=1}^r (\chi(x_\ell))
\times e^{[w_2 w_3 \sum_{\ell=1}^{r} x_\ell + w_1 w_2 w_3 x + w_1 w_3 \sum_{\ell=1}^{r} i_{\ell} + w_1 w_2 \sum_{\ell=1}^{r} j_{\ell}]q^t} d\mu_{q^{-w_2 w_3}}(x_1) \cdots d\mu_{q^{-w_2 w_3}}(x_r)
= \lim_{N \to \infty} \left(\frac{1}{[dp^N]_{-q^{w_2 w_3}}} \right)^r \sum_{x_1, \cdots, x_r = 0} \prod_{\ell=1}^r \chi(x_\ell)
\times e^{[w_2 w_3 \sum_{\ell=1}^{r} x_\ell + w_1 w_2 w_3 x + w_1 w_3 \sum_{\ell=1}^{r} i_{\ell} + w_1 w_2 \sum_{\ell=1}^{r} j_{\ell}]q^t} (-q^{w_2 w_3})^{x_1 + \cdots + x_r}
= \lim_{N \to \infty} \left(\frac{1}{[w_1 dp^N]_{-q^{w_2 w_3}}} \right)^r \sum_{k_1, \cdots, k_r = 0} \sum_{y_1, \cdots, y_r = 0} \prod_{\ell=1}^r \chi(k_\ell)
\times q^{w_2 w_3 \sum_{\ell=1}^{r} (k_\ell + w_1 y_\ell)} e^{[w_2 w_3 \sum_{\ell=1}^{r} (k_\ell + dw_1 y_\ell) + w_1 w_2 w_3 x + w_1 w_3 \sum_{\ell=1}^{r} i_{\ell} + w_1 w_2 \sum_{\ell=1}^{r} j_{\ell}]q^t},$$

(7)

where $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$. By (7), we get
Therefore, by Theorem 1 and (9), we obtain the following theorem.

\[(\frac{1}{[w_2w_3]_q})^r \sum_{i_1,\ldots,i_r=0}^{d-w_1} \sum_{j_1,\ldots,j_r=0}^{d-w_2w_3} \left(\prod_{\ell=1}^{r} (\chi(i_\ell j_\ell)) \right) (-1)^{\sum_{\ell=1}^{r}(i_\ell+j_\ell)} \times q^{w_2w_3} \sum_{\ell=1}^{r} i_\ell + w_1 w_2 \sum_{\ell=1}^{r} j_\ell \int_X \ldots \int_X \left(\prod_{\ell=1}^{r} (\chi(x_\ell)) \right) \times e^{\left[w_2w_3 \sum_{\ell=1}^{r} x_\ell + w_1 w_2w_3 x + w_1w_3 \sum_{\ell=1}^{r} i_\ell + w_1 w_2 \sum_{\ell=1}^{r} j_\ell \right]_q t} \times d\mu_{-q}^{w_2w_3} (x_1) \cdots d\mu_{-q}^{w_2w_3} (x_r) \]

As this expression is invariant under any permutation \(\sigma \in S_3\), we have the following theorem.

Theorem 2.1. For \(w_1, w_2, w_3, d \in \mathbb{N}\) with \(w_i \equiv 1 (\text{mod } 2), d \equiv 1 (\text{mod } 2), (i = 1, 2, 3)\), the following expressions

\[(\frac{1}{[w_{\sigma(2)}w_{\sigma(3)}]_q})^r \sum_{i_1,\ldots,i_r=0}^{d-w_{\sigma(1)}} \sum_{j_1,\ldots,j_r=0}^{d-w_{\sigma(2)}} \left(\prod_{\ell=1}^{r} (\chi(i_\ell j_\ell)) \right) (-1)^{\sum_{\ell=1}^{r}(i_\ell+j_\ell)} \times q^{w_{\sigma(1)}w_{\sigma(2)}} \sum_{\ell=1}^{r} i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^{r} j_\ell \int_X \ldots \int_X \left(\prod_{\ell=1}^{r} (\chi(x_\ell)) \right) \times e^{\left[w_{\sigma(1)} w_{\sigma(2)} (x_\ell + w_{\sigma(1)} w_{\sigma(2)} x) + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^{r} i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^{r} j_\ell \right]_q t} \times d\mu_{-q}^{w_{\sigma(1)} w_{\sigma(2)}} (x_1) \cdots d\mu_{-q}^{w_{\sigma(1)} w_{\sigma(2)}} (x_r) \]

are the same for any \(\sigma \in S_3\).

By (6), we get

\[\int_X \ldots \int_X \left(\prod_{\ell=1}^{r} (\chi(x_\ell)) \right) e^{\left[w_2w_3 \sum_{\ell=1}^{r} x_\ell + w_1 w_2w_3 x + w_1w_3 \sum_{\ell=1}^{r} i_\ell + w_1 w_2 \sum_{\ell=1}^{r} j_\ell \right]_q t} \times d\mu_{-q}^{w_2w_3} (x_1) \cdots d\mu_{-q}^{w_2w_3} (x_r) \]

\[= \sum_{n=0}^{\infty} \left[w_2w_3 \right]_q^n \frac{t^n}{n!} \left(w_1 x + \frac{w_1}{w_2} \sum_{\ell=1}^{r} i_\ell + \frac{w_1}{w_3} \sum_{\ell=1}^{r} j_\ell \right) \]

Therefore, by Theorem 1 and (9), we obtain the following theorem.
Theorem 2.2. Let \(w_1, w_2, w_3, d \in \mathbb{N} \) with \(w_1 \equiv 1 \pmod{2} \), \(w_2 \equiv 1 \pmod{2} \), \(w_3 \equiv 1 \pmod{2} \), \(d \equiv 1 \pmod{2} \) and \(n \in \mathbb{N} \cup \{0\} \). Then the following expressions

\[
\left[\frac{w_{\sigma(2)} w_{\sigma(3)}}{w_{\sigma(2)} w_{\sigma(3)}} \right]^n_q \sum_{\ell=1}^r \sum_{i=0}^{w_{\sigma(2)}-1} \sum_{j=0}^{w_{\sigma(3)}-1} (-1)^{\sum_{\ell=1}^r (i+2\ell)} \prod_{\ell=1}^r \chi(i\ell) \chi(j\ell)
\]

\[
\times q^{w_{\sigma(1)} w_{\sigma(3)} \sum_{\ell=1}^r i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^r j_\ell} E_{n, q, w_{\sigma(2)}, w_{\sigma(3)}, \chi}^{(r)} \left(\frac{w_{\sigma(1)}}{w_{\sigma(2)}} \sum_{\ell=1}^r i_\ell + \frac{w_{\sigma(1)}}{w_{\sigma(3)}} \sum_{\ell=1}^r j_\ell \right)
\]

are the same for any \(\sigma \in S_3 \).

From (5), we have

\[
\int x \cdots \int x \left(\prod_{\ell=1}^r \chi(x_{\ell}) \right) \left[\sum_{\ell=1}^r \sum_{\ell=1}^r i_\ell + w_1 \sum_{\ell=1}^r j_\ell \right]^n q^{w_{\sigma(1)} w_{\sigma(3)} \sum_{\ell=1}^r i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^r j_\ell} \chi(w_1 x) \chi(w_2 x) \chi(w_3 x)
\]

\[
= \sum_{k=0}^n \binom{n}{k} \left(\frac{[w_1]^q}{[w_2 w_3]^q} \right)^{n-k} \left[\sum_{\ell=1}^r i_\ell + \sum_{\ell=1}^r j_\ell \right]^{n-k} \int x \cdots \int x \left(\sum_{\ell=1}^r \sum_{\ell=1}^r i_\ell + w_1 \sum_{\ell=1}^r j_\ell \right) q^{w_{\sigma(1)} w_{\sigma(3)} \sum_{\ell=1}^r i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^r j_\ell} \chi(w_1 x) \chi(w_2 x) \chi(w_3 x)
\]

By (10), we get

\[
\left[\frac{w_2 w_3^n}{w_2 w_3} \right] q^{d w_2 - 1} \sum_{i_1, \cdots, i_r=0}^{w_2 w_3} (-1)^{\sum_{\ell=1}^r (i+2\ell)} \prod_{\ell=1}^r \chi(i\ell) \chi(j\ell)
\]

\[
\times q^{w_{\sigma(1)} w_{\sigma(3)} \sum_{\ell=1}^r i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^r j_\ell} \int x \cdots \int x \left(\sum_{\ell=1}^r \sum_{\ell=1}^r i_\ell + \sum_{\ell=1}^r j_\ell \right) q^{w_{\sigma(1)} w_{\sigma(3)} \sum_{\ell=1}^r i_\ell + w_{\sigma(1)} w_{\sigma(2)} \sum_{\ell=1}^r j_\ell} \chi(w_1 x) \chi(w_2 x) \chi(w_3 x)
\]

\[
= \sum_{k=0}^n \binom{n}{k} \left(\frac{[w_2 w_3]^q}{[w_2 w_3]^q} \right)^{n-k} E_{n, q, w_{\sigma(2)}, \chi}^{(r)} (w_1 x) I_{n, k, q, \chi}^{(r)} (w_2, w_3 : d|x),
\]
where

\[T_{n,k,q}^{(r)}(w_1, w_2 : d|\chi) = \sum_{i_1, \ldots, i_r=0}^{d w_1-1} \sum_{j_1, \ldots, j_r=0}^{d w_2-1} q^{w_2 \sum_{\ell=1}^r i_{\ell} + w_1 \sum_{\ell=1}^r j_{\ell}} (k+1) \left(-1 \right)^{\sum_{\ell=1}^r (i_{\ell}+j_{\ell})} \]

\[\times \left(\prod_{\ell=1}^{r} \chi(i_{\ell}) \chi(j_{\ell}) \right) \left[w_2 \sum_{\ell=1}^{r} i_{\ell} + w_1 \sum_{\ell=1}^{r} j_{\ell} \right]_{q}^{n-k}. \]

(12)

Therefore, by (11) and (12), we obtain the following theorem.

Theorem 2.3. For \(w_1, w_2, w_3, d \in \mathbb{N} \) with \(w_i \equiv 1 (\text{mod} \ 2), d \equiv 1 (\text{mod} \ 2), (i = 1, 2, 3) \) and \(n \in \mathbb{N} \cup \{0\} \), the following expression

\[\sum_{k=0}^{n} \binom{n}{k} \left[w_{\sigma(2)} w_{\sigma(3)} \right]_{q}^{k} \left[w_{\sigma(1)} \right]_{q}^{n-k} E_{k,q,w_{\sigma(2)},w_{\sigma(3)},\chi}^{(r)} (w_{\sigma(1)} x) T_{n,k,q,w_{\sigma(1)} w_{\sigma(2)},w_{\sigma(3)} : d|\chi}^{(r)} \]

are the same for any permutation \(\sigma \in S_3 \).

ACKNOWLEDGEMENTS. This paper is supported by grant 14-11-00022 of Russian Scientific Fund.

REFERENCES

Received: July 5, 2014