Comments on “Modeling Dynamical Interactions between Leptospirosis Infected Vector and Human Population”

Applied Mathematical Sciences, 6 (2012), 1287-1302

Tooba Feroze
School of Natural Sciences
National University of Sciences and Technology
H-12, Islamabad, Pakistan

Copyright © 2014 Tooba Feroze. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

It is pointed out here that some stability conditions presented by Zaman et al in reference [2] are incorrect, as they depend upon the erroneously obtained eigenvalues of some matrices. The correct eigenvalues are also given here.

Mathematics Subject Classification: 92D25, 49J15, 93D20

Keywords: Eigenvalues, stability conditions

In reference [2] Zaman et al first combined two non-linear models of human and vector population. Then they discussed: (i) the local and the global asymptotic stability of disease-free equilibria, (ii) the endemic equilibrium and background bi-function for several parameters, and (iii) the numerical stimulations of real leptospirosis epidemic. The stability conditions presented as Theorems 3.1 and 3.2 are incorrect as their proves depend on the eigenvalues of the matrices \(J_1 \) and \(J_2 \) of Theorem 3.1 and \(J_0 \) of Theorem 3.2. But the eigenvalues for these matrices given and used in [2] are not correct, as these values do not satisfy the well known properties of the eigenvalues [1] that if \(\lambda_1, \lambda_2, ..., \lambda_n \) are \(n \) eigenvalues of a \(n \times n \) matrix \(A \), then trace of the matrix is

\[
tr (A) = \lambda_1 + \lambda_2 + ... + \lambda_n, \quad (1)
\]
and determinant of the matrix is

\[\text{det}(A) = \lambda_1 \lambda_2 \ldots \lambda_n. \]

(2)

Now, to justify our claim that the given eigenvalues are incorrect we consider each matrix separately.

The matrix \(J_1 \) of Theorem 3.1 is

\[
J_1 = \begin{bmatrix}
-\mu_h & -\beta_1 S_h^0 & \lambda_h & 0 & -\beta_2 S_h^0 \\
0 & -Q_2 + \beta_1 S_h^0 & 0 & 0 & \beta_2 S_h^0 \\
0 & \gamma_h & -Q_3 & 0 & 0 \\
0 & -\beta_3 S_\nu^0 & 0 & -\gamma_\nu & 0 \\
0 & \beta_3 S_\nu^0 & 0 & 0 & -Q_1
\end{bmatrix}.
\]

(3)

The eigenvalues given in the reference [2] for \(J_1 \) are

\[
\lambda_1 = -\mu_h, \quad \lambda_2 = -\gamma_\nu, \quad \lambda_3 = -S_\nu^0 Q_3 \beta_3, \\
\lambda_4 = -Q_2 + \beta_1 S_h^0, \quad \lambda_5 = -Q_1 (-Q_2 + \beta_1 S_h^0) - S_h^0 S_\nu^0 \beta_2 \beta_3.
\]

(4)

For these values, we have

\[
\begin{align*}
\lambda_1 + \lambda_2 + \ldots + \lambda_5 & = -\mu_h - \gamma_\nu - S_\nu^0 Q_3 \beta_3 - Q_2 + \beta_1 S_h^0 - Q_1 (-Q_2 + \beta_1 S_h^0) \\
& - S_h^0 S_\nu^0 \beta_2 \beta_3, \\
\lambda_1 \lambda_2 \ldots \lambda_5 & = -S_h^0 S_\nu^0 Q_3 \beta_3 (-Q_2 + \beta_1 S_h^0) [-Q_1 (-Q_2 + \beta_1 S_h^0)] \\
& - S_h^0 S_\nu^0 \beta_2 \beta_3.
\end{align*}
\]

(6)

(7)

Now, one can easily obtain the trace and the determinant of the above matrix given by eq.(3) as

\[
\begin{align*}
\text{tr}(J_1) & = S_h^0 \beta_1 - Q_2 - Q_3 - \mu_h - Q_1 - \gamma_\nu, \\
\text{det}(J_1) & = S_h^0 Q_1 Q_3 \beta_1 \mu_h \gamma_\nu - Q_1 Q_2 Q_3 \mu_h \gamma_\nu + S_h^0 S_\nu^0 Q_3 \beta_2 \beta_3 \mu_h \gamma_\nu.
\end{align*}
\]

(8)

(9)

It can be seen by comparing eq.(6) and eq.(8) that \(\text{tr}(J_1) \neq \lambda_1 + \lambda_2 + \ldots + \lambda_5 \) and by comparing eq.(7) and eq.(9) it can also be seen that for these values \(\text{det}(J_1) \neq \lambda_1 \lambda_2 \ldots \lambda_5 \). Therefore, values given in eqs.(4) and (5) are not the eigenvalues for the matrix \(J_1 \).

The matrix \(J_0 \) of Theorem 3.1: The eigenvalues given in reference [1] for the matrix

\[
J_0 = \begin{bmatrix}
-\mu_h & 0 & \lambda_h & 0 & 0 \\
0 & -Q_2 & 0 & 0 & 0 \\
0 & \gamma_h & -Q_3 & 0 & 0 \\
0 & 0 & 0 & -\gamma_\nu & 0 \\
0 & 0 & 0 & 0 & -Q_1
\end{bmatrix}
\]

(10)
Comments on “Modeling dynamical interactions...”

are

\[\lambda_1 = -\mu_h, \quad \lambda_2 = -Q_2, \quad \lambda_3 = -Q_2Q_3, \quad \lambda_4 = -\gamma_v, \quad \lambda_5 = -Q_1. \] \hspace{1cm} (11)

These values give

\[\lambda_1 + \lambda_2 + \ldots + \lambda_5 = -\mu_h - Q_2 - Q_2Q_3 - \gamma_v - Q_1, \] \hspace{1cm} (12)

\[\lambda_1\lambda_2\ldots\lambda_5 = -\mu_h\gamma_v Q_1 Q_2^2 Q_3. \] \hspace{1cm} (13)

For \(J_0 \), we get

\[\text{tr} (J_0) = -\mu_h - Q_2 - Q_3 - Q_1 - \gamma_v, \] \hspace{1cm} (14)

\[\text{det}(J_0) = -Q_1 Q_2 Q_3 \mu_h \gamma_v. \] \hspace{1cm} (15)

A comparison of eqs. (12) and (14) and eqs. (13) and (15) shows that the values given in eq. (11) do not satisfy properties of eigenvalues given in eq. (1) and eq. (2).

The matrix \(J_1 \) of Theorem 3.2: Consider the matrix \(J_1 \) as given in reference [2]

\[J_1 = \begin{bmatrix} -\mu_h & -\beta_1 & -\lambda_h & 0 & -\beta_2 \\ 0 & -Q_2 + \beta_1 & 0 & 0 & \beta_2 \\ 0 & \gamma_h & -Q_3 & 0 & 0 \\ 0 & 0 & 0 & -\gamma_v & 0 \\ 0 & 0 & 0 & 0 & -Q_1 \end{bmatrix}. \] \hspace{1cm} (16)

For this matrix the given eigenvalue are

\[\lambda_1 = -\mu_h, \quad \lambda_2 = -Q_2 + \beta_1, \quad \lambda_3 = Q_2Q_3 - \beta_1Q_3, \quad \lambda_4 = -\gamma_v, \quad \lambda_5 = -Q_1. \] \hspace{1cm} (17)

These values yield

\[\lambda_1 + \lambda_2 + \ldots + \lambda_5 = -\mu_h + (-Q_2 + \beta_1) + Q_2Q_3 - \beta_1Q_3 - \gamma_v - Q_1, \] \hspace{1cm} (18)

\[\lambda_1\lambda_2\ldots\lambda_5 = \mu_h\gamma_v Q_1 (Q_2 - \beta_1) (Q_2 - \beta_1) Q_3. \] \hspace{1cm} (19)

But the values of trace and the determinant are

\[\text{tr} (J_1) = \beta_1 - Q_2 - Q_3 - Q_1 - \mu_h - \gamma_v, \] \hspace{1cm} (20)

\[\text{det}(J_1) = Q_1 Q_3 \beta_1 \mu_h \gamma_v - Q_1 Q_2 Q_3 \mu_h \gamma_v. \] \hspace{1cm} (21)

Therefore, for this matrix also properties given in eqs. (1) and (2) are not satisfied.
Correct Values: We find the correct eigenvalues for matrix J_1 of Theorem 3.1 as

$$
\lambda_1 = \frac{1}{2} S_h^o \beta_1 - \frac{1}{2} Q_2 - \frac{1}{2} Q_1 - \frac{1}{2} F_1,
$$

where

$$
F_1 = \sqrt{2 S_h^o Q_1 \beta_1 - 2 Q_1 Q_2 - 2 S_h^o Q_2 \beta_1 + 4 S_h^o S_h^o S_h^o \beta_2 \beta_3 + Q_1^2 + Q_2^2 + S_h^2 \beta_1^2},
$$

$$
\lambda_2 = \frac{1}{2} S_h^o \beta_1 - \frac{1}{2} Q_2 - \frac{1}{2} Q_1 + \frac{1}{2} F_2,
$$

where

$$
F_2 = \sqrt{2 S_h^o Q_1 \beta_1 - 2 Q_1 Q_2 - 2 Q_2 \beta_1 + 4 S_h^o S_h^o \beta_2 \beta_3 + Q_1^2 + Q_2^2 + S_h^2 \beta_1^2},
$$

$$
\lambda_3 = -\gamma_v, \quad \lambda_4 = -Q_3, \quad \lambda_5 = -\mu_h,
$$

and for matrix J_0 of Theorem 3.1 as

$$
\lambda_1 = -\gamma_v, \quad \lambda_2 = -\mu_h, \quad \lambda_3 = -Q_3, \quad \lambda_4 = -Q_1, \quad \lambda_5 = -Q_2.
$$

Similarly, for the matrix J_1 of Theorem 3.2, the correct eigenvalues are

$$
\lambda_1 = \beta_1 - Q_2, \quad \lambda_2 = -\gamma_v, \quad \lambda_3 = -\mu_h, \quad \lambda_4 = -Q_3, \quad \lambda_5 = -Q_1.
$$

These values satisfy properties of eigenvalues given in eqs.(1) and (2).

Conclusion

In this paper it has been pointed out that the eigenvalues given in Theorems 3.1 and 3.2 of [2] are incorrect. The correct eigenvalues are also provided. Theorems 3.1 and 3.2 can now be proved and analyzed for these values.

References

Received: May 16, 2014