Remarks on the Hermite-Hadamard Type Inequalities for Harmonically Quasi-Convex Functions

Jaekeun Park

Department of Mathematics
Hanseo University
Seosan, Choongnam, 356-706, Korea

Copyright © 2014 Jaekeun Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, some new results related to the right-hand side of the Hermite-Hadamard type inequality for the class of functions whose derivatives at certain powers are harmonically quasi-convex functions are obtained.

Mathematics Subject Classification: 26A51, 26D15

Keywords: Hermite-Hadamard type inequality, Simpson type inequality, Hölder’s inequality, Harmonically convexity

1 Introduction

Many inequalities have been established for convex functions but the most famous is the Hermite-Hadamard’s inequality, due to its rich geometrical significance and applications, which is stated as follows: Let $f : I \subseteq R \to R$ be a convex function and $a, b \in I$ with $a < b$. Then following double inequalities hold:

$$f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}. \quad (1)$$
Hermite-Hadamard’s inequalities for convex, \((\alpha,m)\)-convex, \(GA\)-convex and geometric convex functions and have received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found in \([1, 2, 3, 7, 8, 9, 10, 11, 13, 14]\) and references therein.

Let us recall some definitions of several kinds of convex functions:

Definition 1. Let \(I\) be an interval in \(R\). Then \(f: I \rightarrow R\) is said to be convex on \(I\) if the inequality
\[
f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)
\]
holds, for all \(x, y \in I\) and \(t \in [0, 1]\).

Definition 2. Let \(I\) be an interval in \(R_+ = (0, \infty)\). A function \(f: I \rightarrow R\) is said to be harmonically convex on \(I\) if the inequality
\[
f\left(\frac{xy}{tx + (1 - t)y}\right) \leq tf(y) + (1 - t)f(x)
\]
holds, for all \(x, y \in I\) and \(t \in [0, 1]\). If the inequality in (2) is reversed, then \(f\) is said to be harmonically concave.

In [4], İmdat Işcan established the following result of the Hermite-Hadamard type for harmonically convex functions:

Theorem 1.1. Let \(f: I \subseteq R_+ = (0, \infty) \rightarrow R\) be a harmonically convex function on an interval \(I\) and \(f \in L[a,b]\), where \(a, b \in I\) with \(a < b\).

\[
f\left(\frac{2ab}{a+b}\right) \leq \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \leq \frac{f(a) + f(b)}{2}.
\]

Also, in [4, 5, 6], İmdat Işcan established some new Hermite-Hadamard type and Ostrowski type inequalities, which estimate the difference between the middle and the rightmost terms in (3), for harmonically convex functions:

Theorem 1.2. Let \(f: I \subseteq R_+ = (0, \infty) \rightarrow R\) be a differentiable function on the interior \(I^0\) of an interval \(I\) in \(R_+ = (0, \infty)\) and \(f' \in L[a,b]\), where \(a, b \in I\) with \(a < b\). If \(|f'|^q\) is harmonically convex function on \([a,b]\) for \(q \geq 1\), then the following inequality holds:

\[
\left|\frac{f(a) + f(b)}{2} - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx\right|
\leq \frac{ab(b-a)}{2} \lambda_1^{\frac{1}{2}} \left[\lambda_2 \left|f'(a)\right|^q + \lambda_3 \left|f'(b)\right|^q\right]^{\frac{1}{q}},
\]

where \(\lambda_1, \lambda_2, \lambda_3\) are positive constants.
Hermite-Hadamard type inequalities

where

\[
\lambda_1 = \frac{1}{ab} - \frac{2}{(b - a)^2} \ln \left(\frac{(a + b)^2}{4ab} \right),
\]

\[
\lambda_2 = -\frac{1}{b(b - a)} + \frac{3a + b}{(b - a)^3} \ln \left(\frac{(a + b)^2}{4ab} \right),
\]

\[
\lambda_3 = \frac{1}{a(b - a)} - \frac{3b + a}{(b - a)^3} \ln \left(\frac{(a + b)^2}{4ab} \right)
= \lambda_1 - \lambda_2.
\]

In [15], Zhang et. al defined the harmonically quasi-convex function and supplied several properties of this kind of functions.

Definition 3. Let \(I \) be an interval in \(R_+ = (0, \infty) \). A function \(f : I \to R \) is said to be harmonically quasi-convex on \(I \) if the inequality

\[
f \left(\frac{xy}{tx + (1 - t)y} \right) \leq \sup \{ f(x), f(y) \}
\]

holds, for all \(x, y \in I \) and \(t \in [0, 1] \). If the inequality in (2) is reversed, then \(f \) is said to be harmonically quasi-concave.

In this article we consider the following special functions:

Definition 4. The hypergeometric function \(_2F_1[a, b, c, x] \) is defined for \(| x | < 1 \) by the power series

\[
_2F_1[a, b, c, x] = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} x^n.
\]

Here \((q)_n\) is the Pochhammer symbol, which is defined by

\[
(q)_n = \begin{cases}
1, & n = 0 \\
q(q + 1) \cdots (q + n - 1), & n > 0.
\end{cases}
\]

In this paper, we give some new Hermite-Hadamard type inequalities, which gives an upper bound for the approximation of the integral average \(\frac{1}{b-a} \int_a^b f(u)du \) by the value \(\frac{f(a)+f(b)}{2} \), that is, estimate the difference between the middle and the rightmost terms in (1), for harmonically s-convex functions in the second sense by setting up an integral identity for differentiable functions.
2 Main results

In order to find some new inequalities of Hermite-Hadamard-like type inequalities connected with the rightmost and and middle parts of (1) for functions whose derivatives are harmonically s-convex in the second sense, we need the following lemma [12]:

Lemma 1. Let \(f : I \subseteq R_+ = (0, \infty) \rightarrow R \) be a differentiable function on the interior \(I^0 \) of an interval \(I \) such that \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). Then the following identity

\[
I_f(a, b; r) \equiv \frac{rf(a) + f(b)}{r + 1} - \frac{ab}{b - a} \int_a^b \frac{f(x)}{x^2} \, dx
\]

\[
= \frac{ab(a - b)}{r + 1} \int_0^1 \frac{1 - (r + 1)t}{A_t^2(a, b)} f'(\frac{ab}{A_t(a, b)}) \, dt \quad (6)
\]

holds for \(r \in [0, 1] \), where \(A_t(a, b) = (1 - t)a + tb \).

Proof By the integration by parts, we have

\[
\int_0^1 \frac{1 - (r + 1)t}{A_t^2(a, b)} f'(\frac{ab}{A_t(a, b)}) \, dt
\]

\[
= \frac{1}{ab(b - a)} \left[rf(a) + f(b) - (r + 1) \int_0^1 f\left(\frac{ab}{A_t(a, b)}\right) \, dt\right]
\]

\[
= \frac{1}{ab(b - a)} \left[rf(a) + f(b) - (r + 1) \frac{ab}{b - a} \int_a^b \frac{f(x)}{x^2} \, dx\right]
\]

which implies that the identity (6) holds.

Now we turn our attention to establish the Hermite-Hadamard type inequalities, which estimate the difference between the middle and the leftmost terms in (1), for harmonically quasi-convex functions in the second sense by using the above lemma.

Theorem 2.1. Let \(f : I \subseteq R_+ = (0, \infty) \rightarrow R \) be a differentiable function on \(I^0 \), the interior of a interval \(I \), such that \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). If \(|f'| \) is harmonically quasi-convex on \([a, b]\), then for all \(t \in [0, 1] \) the following inequality holds:

\[
|I_f(a, b; r)| \leq \left\{ \frac{b - ra}{r + 1} + \frac{ab}{b - a} \ln\left[\frac{ab(r + 1)^2}{(ra + b)^2}\right]\right\}
\]

\[
\times \sup \left\{ |f'(a)|, |f'(b)| \right\} \quad (7)
\]
Proof. From Lemma 1, we have

\[
|I_f(a, b; r)| \leq \frac{ab(b - a)}{r + 1} \int_0^1 |1 - (r + 1)t| \left| f'\left(\frac{ab}{A_t(a, b)} \right) \right| dt
\]

\[
= \frac{ab(b - a)}{r + 1} \left[\int_0^{\frac{r+1}{r+1}} \frac{1 - (r + 1)t}{A_t^2(a, b)} \left| f'\left(\frac{ab}{A_t(a, b)} \right) \right| dt + \int_{\frac{r+1}{r+1}}^1 \frac{(r + 1)t - 1}{A_t^2(a, b)} \left| f'\left(\frac{ab}{A_t(a, b)} \right) \right| dt \right].
\]

Since \(|f'|^q\) is harmonically quasi-convex on \([a, b]\), we have

\[
|I_f(a, b; r)| \leq \frac{ab(b - a)}{r + 1} \left\{ \int_0^{\frac{r+1}{r+1}} \frac{1 - (r + 1)t}{A_t^2(a, b)} dt + \int_{\frac{r+1}{r+1}}^1 \frac{(r + 1)t - 1}{A_t^2(a, b)} dt \right\}
\]

\[
\times \sup \left\{ \left| f'(a) \right|, \left| f'(b) \right| \right\}
\]

\[
= \left\{ \frac{b - ra}{r + 1} + \frac{ab}{b - a} \ln \left[\frac{ab(r + 1)}{(ra + b)^2} \right] \right\} \sup \left\{ \left| f'(a) \right|, \left| f'(b) \right| \right\},
\]

where we have used the facts that

\[
(i) \int_0^{\frac{r+1}{r+1}} \frac{1 - (r + 1)t}{A_t^2(a, b)} dt = \frac{1}{a(b - a)} + \frac{r + 1}{(b - a)^2} \ln \left[\frac{a(r + 1)}{ra + b} \right],
\]

\[
(ii) \int_{\frac{r+1}{r+1}}^1 \frac{(r + 1)t - 1}{A_t^2(a, b)} dt = -\frac{r}{b(b - a)} + \frac{r + 1}{(b - a)^2} \ln \left[\frac{b(r + 1)}{ra + b} \right].
\]

Therefore, we can deduce the following results:

Corollary 2.1. Let \(f : I \subseteq R_+ = (0, \infty) \to R \) be a differentiable function on \(I^0 \), the interior of an interval \(I \), such that \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). Assume \(|f'|^q\) is harmonically quasi-convex on \([a, b]\).

(1) If \(r = 1 \) in (7), then the following inequality holds:

\[
|I_f(a, b; 1)| \leq \left\{ \frac{b - a}{2} + \frac{ab}{b - a} \ln \left[\frac{4ab}{(a + b)^2} \right] \right\} \sup \left\{ \left| f'(a) \right|, \left| f'(b) \right| \right\}.
\]
(2) If \(r = 0 \) in (7), then the following inequality holds:

\[
|I_f(a, b; 0)| = \left| f(b) - \frac{ab}{b-a} \int_a^b \frac{f(x)}{x^2} \, dx \right|
\leq \left\{ b + \frac{ab}{b-a} \ln \left[\frac{a}{b} \right] \right\} \sup \left\{ |f'(a)|, |f'(b)| \right\}.
\]

Theorem 2.2. Let \(f : I \subseteq \mathbb{R}_+ = (0, \infty) \to \mathbb{R} \) be a differentiable function on \(I^0 \), the interior of an interval \(I \), such that \(f' \in L([a,b]) \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is harmonically quasi-convex on \([a, b]\) for \(q \geq 1 \), then for all \(x \in [a, b] \) the following inequality holds:

\[
|I_f(a, b; r)| \leq \frac{ab(b-a)}{(r+1)^{1+\frac{1}{p}}} \left\{ \mu_{21}(a, b, r, q) + \frac{1}{r+1} \mu_{22}(a, b, r, q) \right\}
\times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}}, \quad (8)
\]

where

\[
\mu_{21}(a, b, r, q) = \frac{1}{(1+q)(1+r)a^{2q}} \quad 2F_1[1, 2q, 2 + q, -\frac{b-a}{(1+r)a}],
\]

\[
\mu_{22}(a, b, r, q) = \frac{r^{1+q}(1+r)^{2q-1}}{(1+q)(ra+b)^{2q}} \quad 2F_1[1 + q, 2q, 2 + q, -\frac{r(b-a)}{ra+b}].
\]

Proof. From Lemma 1, we have

\[
|I_f(a, b; r)|
\leq \frac{ab(b-a)}{r+1} \left[\int_0^{\frac{1}{r+1}} \frac{1 - (r+1)t}{A^2_t(a, b)} \left| f' \left(\frac{ab}{A_t(a, b)} \right) \right| \, dt \right.
\]

\[
+ \int_{\frac{1}{r+1}}^1 \frac{(r+1)t - 1}{A^2_t(a, b)} \left| f' \left(\frac{ab}{A_t(a, b)} \right) \right| \, dt \bigg].
\]

By the harmonically quasi-convexity of \(|f'|^q \) and using the Hölder integral
inequality, we have
\[
\left| I_f(a, b; r) \right| \leq \frac{ab(b-a)}{r+1} \left\{ \left(\int_0^{\frac{1}{r+1}} 1 \, dt \right)^{\frac{1}{q}} \left(\int_0^{\frac{1}{r+1}} \frac{1-(r+1)t}{A^q_t(a, b)} \, dt \right)^{\frac{1}{r}} + \left(\int_0^{\frac{1}{r+1}} 1 \, dt \right)^{\frac{1}{r}} \left(\int_0^{\frac{1}{r+1}} \frac{(r+1)t-1}{A^q_t(a, b)} \, dt \right)^{\frac{1}{q}} \right\}
\]
\[
= \frac{ab(b-a)}{(r+1)^{1+\frac{1}{r}} + \frac{1}{r}} \left\{ \left(\int_0^{\frac{1}{r+1}} \frac{1-(r+1)t}{A^q_t(a, b)} \, dt \right)^{\frac{1}{r}} + r^{\frac{1}{q}} \left(\int_0^{\frac{1}{r+1}} \frac{(r+1)t-1}{A^q_t(a, b)} \, dt \right)^{\frac{1}{r}} \right\} \left(\sup \left\{ \left| f'(a) \right|^q, \left| f'(b) \right|^q \right\} \right)^{\frac{1}{q}}
\]
which completes the proof.

Corollary 2.2. In the inequality (8) in Theorem 2.2, additionally, if \(| f'(x) | \leq M \) for \(x \in [a, b] \), then the following inequality holds:
\[
\left| I_f(a, b; r) \right| \leq \frac{ab(b-a)M}{(r+1)^{1+\frac{1}{r}}} \left\{ \mu^q_{21}(a, b, r, q) + r^{\frac{1}{q}} \mu^q_{22}(a, b, r, q) \right\}.
\]

Theorem 2.3. Let \(f : I \subseteq \mathbb{R}_+ = (0, \infty) \to \mathbb{R} \) be a differentiable function on \(I^0 \), the interior of an interval \(I \), such that \(f' \in L([a, b]) \), where \(a, b \in I \) with \(a < b \). If \(| f'|^q \) is harmonically quasi-convex on \([a, b]\) for \(q \geq 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then for all \(x \in [a, b] \) the following inequality holds:
\[
\left| I_f(a, b; r) \right| \leq \frac{ab(b-a)}{(r+1)^{1+\frac{1}{r}}} \left\{ \frac{b-ra}{ab(b-a)} + \frac{r+1}{(b-a)^2} \ln \left| \frac{ab(r+1)^2}{(ra+b)^2} \right| \right\} \left(\sup \left\{ \left| f'(a) \right|^q, \left| f'(b) \right|^q \right\} \right)^{\frac{1}{q}}.
\]

Proof. From Lemma 1, we have
\[
\left| I_f(a, b; r) \right| \leq \frac{ab(b-a)}{r+1} \left[\int_0^{\frac{1}{r+1}} \frac{1-(r+1)t}{A^q_t(a, b)} \, dt \left| f' \left(\frac{ab}{A^q_t(a, b)} \right) \right| \right] + \int_0^{\frac{1}{r+1}} \frac{(r+1)t-1}{A^q_t(a, b)} \, dt \left| f' \left(\frac{ab}{A^q_t(a, b)} \right) \right| dt.
\]
By the harmonically quasi-convexity of $|f'|^q$ and using the Hölder integral inequality, we have

$$
\left| I_f(a, b; r) \right| \leq \frac{ab(b - a)}{r + 1} \left[\left(\int_0^{\frac{1}{r+1}} \frac{1 - (r + 1)t}{A_t^2(a, b)} \ dt \right)^{\frac{1}{q}} \left(\int_0^{\frac{1}{r+1}} \frac{1 - (r + 1)t}{A_t^2(a, b)} \ dt \right)^{\frac{1}{p}} \right]^{\frac{1}{q}}
$$

$$
+ \left(\int_{\frac{1}{r+1}}^{1} \frac{(r + 1)t - 1}{A_t^2(a, b)} \ dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{r+1}}^{1} \frac{(r + 1)t - 1}{A_t^2(a, b)} \ dt \right)^{\frac{1}{q}}
$$

$$
\times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}}
$$

$$
= \frac{ab(b - a)}{r + 1} \left\{ \frac{b - ra}{ab(b - a)} + \frac{r + 1}{(b - a)^2} \ln \left[\frac{ab(r + 1)^2}{(ra + b)^2} \right] \right\}
$$

$$
\times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}},
$$

which completes the proof.

Theorem 2.4. Let $f : I \subseteq \mathbb{R}^+ = (0, \infty) \to \mathbb{R}$ be a differentiable function on I^0, the interior of an interval I, such that $f' \in L([a, b])$, where $a, b \in I$ with $a < b$. If $|f'|^q$ is harmonically quasi-convex on $[a, b]$ for $q > 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then for all $x \in [a, b]$ the following inequality holds:

$$
\left| I_f(a, b; r) \right| \leq \frac{ab(b - a)}{r + 1} \left[\left(\int_0^{\frac{1}{r+1}} \frac{1 - (r + 1)t}{A_t^2(a, b)} \ dt \right)^{\frac{1}{q}} \left(\int_0^{\frac{1}{r+1}} \frac{1 - (r + 1)t}{A_t^2(a, b)} \ dt \right)^{\frac{1}{p}} \right]^{\frac{1}{q}}
$$

$$
\times \left[\mu_{41}(a, b, r, q) + r^{1+\frac{q}{p}} \mu_{42}(a, b, r, q) \right]
$$

$$
\times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}},
$$

where

$$
\mu_{41}(a, b, r, q) = \{a(1 + r)\}^{1-2q} - (ra + b)^{1-2q},
$$

$$
\mu_{42}(a, b, r, q) = (ra + b)^{1-2q} - \{b(1 + r)\}^{1-2q}.
$$

Proof. From Lemma 1 and the Hölder integral inequality, we have

$$
\left| I_f(a, b; r) \right| \leq \frac{ab(b - a)}{r + 1} \left[\left(\int_0^{\frac{1}{r+1}} \frac{1 - (r + 1)t}{A_t^2(a, b)} \ dt \right) \left| f'\left(\frac{ab}{A_t(a, b)} \right) \right| dt \right]
$$

$$
+ \left(\int_{\frac{1}{r+1}}^{1} \frac{(r + 1)t - 1}{A_t^2(a, b)} \ dt \right) \left| f'\left(\frac{ab}{A_t(a, b)} \right) \right| dt \right].
$$
By the harmonically quasi-convexity of $|f'|^q$ and using the Hölder integral inequality, we have

$$\left| I_f(a, b; r) \right| \leq \frac{ab(b - a)}{r + 1} \left[\left(\int_0^{\frac{1}{r+1}} \{1 - (r + 1)t\}^p dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{r+1}} \frac{1}{A_i^q(a, b)} dt \right)^{\frac{1}{q}} + \left(\int_1^{\frac{1}{r+1}} \{r + 1\}^p dt \right)^{\frac{1}{p}} \left(\int_1^{\frac{1}{r+1}} \frac{1}{A_i^q(a, b)} dt \right)^{\frac{1}{q}} \right] \times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}} \leq \frac{ab(b - a)}{r + 1} \left[\left(\int_0^{\frac{1}{r+1}} \{1 - (r + 1)t\}^p dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{r+1}} \frac{1}{A_i^q(a, b)} dt \right)^{\frac{1}{q}} + \left(\int_1^{\frac{1}{r+1}} \{r + 1\}^p dt \right)^{\frac{1}{p}} \left(\int_1^{\frac{1}{r+1}} \frac{1}{A_i^q(a, b)} dt \right)^{\frac{1}{q}} \right] \times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}} \times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}} \times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}},$$

where we have used the fact that

$$\int_0^{\frac{1}{r+1}} \frac{1}{A_i^q(a, b)} dt = \frac{a(1 + r)^{1-2q} - (ra + b)^{1-2q}}{(2q - 1)(1 + r)^{1-2q}(b - a)},$$

$$\int_1^{\frac{1}{r+1}} \frac{1}{A_i^q(a, b)} dt = \frac{(ra + b)^{1-2q} - b(1 + r)^{1-2q}}{(2q - 1)(1 + r)^{1-2q}(b - a)},$$

$$\int_0^{\frac{1}{r+1}} \{1 - (r + 1)t\}^p dt = \frac{1}{(1 + p)(1 + r)},$$

$$\int_1^{\frac{1}{r+1}} \{r + 1\}^p dt = \frac{1}{(1 + p)(1 + r)}.$$

Theorem 2.5. Let $f : I \subseteq R_+ = (0, \infty) \rightarrow R$ be a differentiable function on I^0, the interior of an interval I, such that $f' \in L([a, b])$, where $a, b \in I$ with $a < b$. If $|f'|^q$ is harmonically quasi-convex on $[a, b]$ for $q > 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then for all $x \in [a, b]$ the following inequality holds:

$$\left| I_f(a, b; r) \right| \leq ab(b - a) \left(\frac{1}{1 + q} \right)^{\frac{1}{q}} \left(\frac{1}{2p - 1} \right)^{\frac{1}{p}} \times \left[\mu_{41}^p(a, b, r, p) + r^{1+\frac{1}{p}} \mu_{42}^p(a, b, r, p) \right] \times \left(\sup \left\{ |f'(a)|^q, |f'(b)|^q \right\} \right)^{\frac{1}{q}},$$

where $\mu_{4i}(i = 1, 2)$ are defined in Theorem 2.4.
Proof. From Lemma 1 and the Hölder integral inequality, we have

\[
|I_f(a, b; r)| \leq \frac{ab(b - a)}{r + 1} \left[\int_0^\frac{r+1}{r+1} \frac{1 - (r + 1)t}{A_t^2(a, b)} \left| f'(\frac{ab}{A_t(a, b)}) \right| dt \right.
+ \int_\frac{r+1}{r+1}^1 \frac{(r + 1)t - 1}{A_t^2(a, b)} \left| f'(\frac{ab}{A_t(a, b)}) \right| dt].
\]

By the harmonically quasi-convexity of $|f'|^q$ and using the Hölder integral inequality, we have

\[
|I_f(a, b; r)| \leq \frac{ab(b - a)}{r + 1} \left(\sup \left\{ \left| f'(a) \right|^q, \left| f'(b) \right|^q \right\} \right)^{\frac{1}{q}}
\times \left[\left(\int_0^\frac{r+1}{r+1} \frac{1}{A_t^2(a, b)} dt \right)^{\frac{1}{p}} \left(\int_0^\frac{r+1}{r+1} \{1 - (r + 1)t\}^q dt \right)^{\frac{1}{q}}
+ \left(\int_\frac{r+1}{r+1}^1 \frac{1}{A_t^2(a, b)} dt \right)^{\frac{1}{p}} \left(\int_\frac{r+1}{r+1}^1 \{(r + 1)t - 1\}^q dt \right)^{\frac{1}{q}} \right]
\leq ab(b - a)^{\frac{1}{q}} \left(\frac{1}{1 + q} \right)^{\frac{1}{2}} \left(\frac{1}{2p - 1} \right)^{\frac{1}{2}} \left\{ \mu_{21}^q(a, b, r, p) + \mu_{22}^q(a, b, r, p) \right\}
\times \left(\sup \left\{ \left| f'(a) \right|^q, \left| f'(b) \right|^q \right\} \right)^{\frac{1}{q}},
\]

which completes the proof.

Theorem 2.6. Let $f : I \subseteq \mathbb{R}_+ = (0, \infty) \rightarrow \mathbb{R}$ be a differentiable function on I^0, the interior of an interval I, such that $f' \in L([a, b])$, where $a, b \in I$ with $a < b$. If $|f'|^q$ is harmonically quasi-convex on $[a, b]$ for $q \geq 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, then for all $x \in [a, b]$ the following inequality holds:

\[
|I_f(a, b; r)| \leq \frac{ab(b - a)}{(r + 1)^{1 + \frac{1}{q}} \left\{ \mu_{21}^q(a, b, r, p) + r^{\frac{1}{2}} \mu_{22}^q(a, b, r, p) \right\}}
\times \left(\sup \left\{ \left| f'(a) \right|^q, \left| f'(b) \right|^q \right\} \right)^{\frac{1}{q}}.
\]

Proof. From Lemma 1, Hölder integral inequality and the harmonically
Hermite-Hadamard type inequalities

quasi-convexity of \(|f'|^q\), we have

\[
\begin{align*}
|I_f(a, b; r)| & \leq \frac{ab(b - a)}{r + 1} \left[\int_0^{\frac{1}{r + 1}} 1 - (r + 1)t \frac{1}{A_t^2(a, b)} \left| f' \left(\frac{ab}{A_t(a, b)} \right) \right| dt \\
& \quad + \int_1^{\frac{1}{r + 1}} (r + 1)t - 1 \frac{1}{A_t^2(a, b)} \left| f' \left(\frac{ab}{A_t(a, b)} \right) \right| dt \right] \\
& \leq \frac{ab(b - a)}{r + 1} \\
& \times \left[\left(\int_0^{\frac{1}{r + 1}} \frac{1 - (r + 1)t}{A_t^{2p}(a, b)} dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{r + 1}} \left| f' \left(\frac{ab}{A_t(a, b)} \right) \right| dt \right)^{\frac{1}{q}} \\
& \quad + \left(\int_1^{\frac{1}{r + 1}} \frac{(r + 1)t - 1}{A_t^{2p}(a, b)} dt \right)^{\frac{1}{p}} \left(\int_1^{\frac{1}{r + 1}} \left| f' \left(\frac{ab}{A_t(a, b)} \right) \right| dt \right)^{\frac{1}{q}} \right] \\
& \leq \frac{ab(b - a)}{(r + 1)^{1 + \frac{1}{q}}} \left\{ \mu_{21}^\frac{1}{p}(a, b, r, p) + r^\frac{1}{p} \mu_{22}^\frac{1}{p}(a, b, r, p) \right\} \\
& \quad \times \left(\sup \left\{ \left| f'(a) \right|^q, \left| f'(b) \right|^q \right\} \right)^{\frac{1}{q}},
\end{align*}
\]

which completes the proof.

References

Received: July 15, 2014