A Laplace Type Problem for a Regular Lattice with
Convex-Concave Cell with Triangular Obstacles

D. Barilla

University of Messina, Department S.E.A.M.
Via dei Verdi, 75, 98122 - Messina, Italy

M. Stoka

Accademia delle Scienze di Torino, Italy

Copyright © 2014 D. Barilla and M. Stoka. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the previous papers, [1], [2], [3], [4], [5], [6], [7], [8], [9], the au-
thors studies some Laplace problem for different lattices and different
obstacles. In this paper we consider two regular lattices with the cell
represented as in figure 1 and we compute the probability that a ran-
dom segment of constant length intersects a side of lattice. In particular
we obtain the probability determinated in the previous work, then the
Laplace probability.

Keywords: Geometric Probability, stochastic geometry, random sets, ran-
dom convex sets and integral geometry
1 Cells with triangle obstacles.

Let $\mathcal{R}_1(a, b, c; \alpha)$ be the regular lattice with the fundamental cell $C_0^{(1)}$ is represented as in fig. 1

\[
\text{area } C_0^{(1)} = 2ab \sin \alpha - \frac{c^2}{2} \left(\sin \alpha + \frac{1}{4} \sin 2\alpha \right). \tag{1}
\]

Considering a random segment with given length l with $l < \min (a - c, b - c)$. We want compute the probability that this segment intersects a side of lattice. Evident this probability is the same of the probability $P_{\text{int}}^{(1)}$ that segment s intersects the side of the fundamental cell $C_0^{(1)}$.

We denote by 0 the center of s, and we set φ for the angle of s and CD. To compute the probability $P_{\text{int}}^{(1)}$ we consider the limiting positions of s for a specified value of φ let $\tilde{C}_0^{(1)}(\varphi)$ be the determinated figure from these positions (fig. 2):
Laplace type problem

From here we can write:

\[
\text{area}_C^{(1)} (\varphi) = \text{area}_C^{(1)} - \\
[\text{area}_{a_1} (\varphi) + \text{area}_{a_2} (\varphi) + ... + \text{area}_{a_{10}} (\varphi)].
\] (2)

Considering fig. 1 and fig 2 we have that:

\[
\text{area}_{a_1} (\varphi) = \frac{cl}{2} \cos \frac{\alpha}{2} \sin \left(\varphi - \frac{\alpha}{2} \right).
\] (3)

\[
\text{area}_{a_3} (\varphi) = |C_1C_2| \cdot h_3 = \frac{cl}{2} \sin \frac{\alpha}{2} \cos \left(\varphi - \frac{\alpha}{2} \right).
\] (4)

\[
\text{area}_{a_4} (\varphi) = \left(b - \frac{c}{2} \right) \frac{l}{2} \sin \varphi.
\] (5)

\[
\text{area}_{a_5} (\varphi) = \left(b - \frac{c}{2} \right) \sin (2 \alpha - \varphi).
\] (6)

\[
\text{area}_{a_6} (\varphi) = \frac{lh_6}{2} = \frac{cl}{2} \sin \frac{\alpha}{2} \cos \left(\frac{3\alpha}{2} - \varphi \right).
\] (7)

\[
\text{area}_{a_7} (\varphi) = \left[a - c - \frac{l}{\cos \frac{\alpha}{2}} \cos \left(\frac{3\alpha}{2} - \varphi \right) \right] \frac{l}{2} \sin (\alpha - \varphi).
\] (8)
\[area_{a_8} (\varphi) = \frac{cl}{2} \sin \left(\frac{\pi - \alpha}{2} \right) \cos \left(\varphi - \frac{\pi}{2} + \frac{\alpha}{2} \right) = \frac{cl}{2} \cos \frac{\alpha}{2} \sin \left(\varphi + \frac{\alpha}{2} \right). \] (9)

\[area_{a_{10}} (\varphi) = \frac{cl}{2} \sin \alpha \cos (\alpha - \varphi). \] (10)

\[area_{a_9} (\varphi) = \frac{(b - c)l}{2} \sin (2\alpha - \varphi). \] (11)

\[area_{a_{11}} (\varphi) = \frac{(b - c)l}{2} \sin \varphi. \] (12)

Combining (2) with (4), (5), (6), (7), (8), (9), (10), (11), (12), and (13), we obtain that

\[area \widehat{C}_0^{(1)} (\varphi) = areaC_0^{(1)} - \left\{ \frac{l}{2} \cos \varphi [(2a - c) \sin \alpha + b \sin 2\alpha] + \right. \]

\[\frac{l}{2} \sin \varphi \left[2b + \frac{c}{2} (\sin 2\alpha - \sin \alpha) + \frac{3c}{2} \cos \alpha - (b - c) \cos^2 \alpha + b \sin^2 \alpha \right] \]

\[- \frac{l^2}{2} \sin 2(\alpha - \varphi) \right\} \] (13)

Denoting with \(M_1 \) the set of all segments \(s \) which have their center in the fundamental cell and with \(N_1 \) the set of all segments \(s \) completely contained in the fundamental cell, we have that [11]:

\[P_{int}^{(1)} = 1 - \frac{\mu (N_1)}{\mu (M_1)}, \] (14)

where \(\mu \) is the Lebesgue measure in Euclidean plane.

The measures \(\mu (M_1) \) and \(\mu (N_1) \) are calculated using the Poincaré kinematic measure [10]

\[dK = dx \wedge dy \wedge d\varphi, \]

where \(x, y \) are the coordinates of center point \(O \) of \(s \) and \(\varphi \) the defined angle.

To determine the limits between which the angle \(\varphi \) varies, we considered \(\varphi_1 \leq \varphi \leq \varphi_2 \), we have \(\varphi_1 = 0 \) and \(\varphi_2 + \frac{\pi}{2} - \alpha = \frac{\pi}{2} \), then \(\varphi_2 = \alpha \).

Therefore \(\varphi \in [0, \alpha] \).
We have:

$$\mu(M_1) = \int_0^\alpha d\varphi \iint_{\{ (x, y) \in C_0^{(1)} \}} dxdy = \int_0^\alpha \left(\text{area} C_0^{(1)} \right) d\varphi = \text{area} C_0^{(1)}$$ \hspace{1cm} (15)$$

and by (14),

$$\mu(N_1) = \int_0^\alpha d\varphi \iint_{\{ (x, y) \in \tilde{C}_0^{(1)}(\varphi) \}} dxdy = \int_0^\alpha \left[\text{area} \tilde{C}_0^{(1)}(\varphi) \right] d\varphi =$$

$$\text{area} C_0^{(1)} - \int_0^\alpha \left\{ \frac{l}{2} \cos \varphi \left[(2a - c) \sin \alpha + b \sin 2\alpha \right] +$$

$$\frac{l}{2} \sin \varphi \left[2b + \frac{c}{2} (\sin 2\alpha - \sin \alpha) + \frac{3c}{2} \cos \alpha - (b - c) \cos^2 \alpha$$

$$+ b \sin^2 \alpha \right] - \frac{l^2}{2} \sin 2(\alpha - \varphi) \right\} d\varphi =$$

$$\text{area} C_0^{(1)} - \left\{ \frac{l}{2} \left[(2a - c) \sin^2 \alpha + b \sin \alpha \sin 2\alpha + 2b (1 - \cos \alpha) +$$

$$+ \frac{c}{2} (1 - \cos \alpha) (\sin 2\alpha - \sin \alpha + 3 \cos \alpha) - (b - c)(1 - \cos \alpha) \cos^2 \alpha +$$

$$+ 2b (1 - \cos \alpha) \sin^2 \alpha \right] - \frac{l^2}{4} (1 - \cos 2\alpha) \right\}. \hspace{1cm} (16)$$

The relation (1), (15), (16) and (18) give us:

$$p_{int}^{(1)} = \frac{1}{\alpha \left[2ab \sin \alpha - \frac{c^2}{2} (\sin \alpha + \sin 2\alpha) \right]}$$

$$\left\{ \frac{l}{2} \left[(2a - c) \sin^2 \alpha + 2b (1 - \cos \alpha) (1 + \sin^2 \alpha) +$$

$$b \sin \alpha \sin 2\alpha + \frac{c}{2} (1 - \cos \alpha) (\sin 2\alpha - \sin \alpha + 3 \cos \alpha) \right\}. \hspace{1cm} (17)$$
\[-(b - c) (1 - \cos \alpha) \cos^2 \alpha] - \frac{l^2}{4} (1 - \cos 2\alpha) \}

For \(\alpha = \frac{\pi}{2}\) the fundamental cell becomes a rectangle with sides \(a, 2b\) and with four obstacles which are triangle isosceles rectangle same each other and the probability (19) becomes:

\[P_1 = \frac{2 \left(a + 2b - \frac{3c}{4} \right) l - l^2}{\pi \left(2ab - \frac{c^2}{2} \right)} \]
(18)

already found in the previous paper [1].

Evidently for \(c = 0\) the probability (24) become the Laplace probability:

\[P = \frac{2 (a + 2b) l - l^2}{2\pi ab}.\]

References

Received: June 3, 2014