On the Signless Laplacian Energy and Signless Laplacian Estrada Index of Extremal Graphs

R. Binthiya and P. B. Sarasija

Department of Mathematics
Noorul Islam Centre For Higher Education
Kumaracoil-629175, TamilNadu, India

Abstract

Let G be a simple (n,m)-graph. Let \(q_1, q_2, \ldots, q_n \) be the eigen values of the signless Laplacian matrix of the graph G. The signless Laplacian energy of the graph G is \(\sum_{i=1}^{n} |q_i - \frac{2m}{n}| \) and the signless Laplacian Estrada index of the graph G is \(\sum_{i=1}^{n} e^{q_i} \). In this paper we establish upperbound for Signless Laplacian energy and Signless Laplacian Estrada index of the graph G and specific the corresponding extremal graphs.

Mathematics Subject Classification: 05C50, 05C78

Keywords: Signless Laplacian Energy, Signless Laplacian Estrada Index, Connectivity

1 Introduction

In this paper we consider all graphs are finite and simple, we say that G is a (n,m) graph if G has n vertices and m edges with vertex set \(V(G) \) and edge set \(E(G) \). The adjacency matrix of G, \(A(G) \), is a binary matrix of order n such that \(a_{ij} = 1 \) if the vertex \(v_i \) is adjacent to the vertex \(v_j \) where \(v_i, v_j \in V(G) \) and 0 otherwise. The matrix \(D(G) \) of G is the diagonal matrix of order n whose \((i, i) \)-entry is the degree \(d_i \) of the vertex \(v_i \) in \(V(G) \). Then the matrix \(Q(G) = D(G) + A(G) \) is the Signless Laplacian matrix, for detailed spectral properties on its
see [2]. The eigenvalues q_1, q_2, \ldots, q_n of the Signless Laplacian matrix $Q(G)$ of the graph G are also called the signless Laplacian eigenvalues(spectrum) of G and it can be ordered as $q_1(G) \geq q_2(G) \geq \ldots \geq q_n(G)$. Then the Signless Laplacian energy [7] is defined by

$$SLE = SLE(G) = \sum_{i=1}^{n} \left| q_i - \frac{2m}{n} \right|.$$

The Signless Laplacian Spectrum satisfy the following well-known relations [3],

$$\sum_{i=1}^{n} q_i = 2m \text{ and } \sum_{i=1}^{n} q_i^2 = 2m + \sum_{i=1}^{n} d_i^2.$$

The Signless Laplacian estrada index [8] is defined by

$$SLEE = SLEE(G) = \sum_{i=1}^{n} e^{q_i}.$$

For details on spectral graph theory see [5]. Let $k \geq 1$, we say that a graph G is k-connected if either G is the complete graph K_{k+1} or G has at least $k + 2$ vertices and has no $(k-1)$-vertex cut. Similarly, G is k-edge-connected if it has at least two vertices and does not having $(k-1)$-edge cut. The connectivity of G is the maximum value of k for which a connected graph G is k-connected, denoted by $\kappa(G)$. If G is disconnected then $\kappa(G) = 0$. The edge-connectivity $\kappa'(G)$ is defined analogously. If G is a graph of order n, then (i). $\kappa(G) \leq \kappa'(G) \leq n - 1$, and (ii). the three statements $\kappa(G) = n - 1$, $\kappa'(G) = n - 1$ and $G \cong K_n$ are equivalent.

Let G_1 and G_2 are any two graphs, the join, $G_1 \vee G_2$, of the graphs G_1 and G_2 is the graph obtained from the disjoint union $G_1 \cup G_2$ by adding new edges from each vertex in G_1 to every vertex in G_2. Now $G = (V(G), E(G))$ is the graph with n vertices, the induced subgraph $G[V - U]$, if $U \subset V(G)$, is $G - U$.

In this paper, we determine the extremal graphs with given connectivity k maximizing the Signless Laplacian Energy and Signless Laplacian Estrada index.

\section{The Signless Laplacian Energy and connectivity}

\textbf{Lemma 2.1.} [4] \newline
Let G be an (n,m) graph and e an edge of G. Then, $0 \leq q_n(G) \leq q_n(G + e) \leq q_{n-1}(G) \leq q_{n-1}(G + e) \leq \ldots \leq q_1(G) \leq q_1(G + e)$.

By this lemma noting that $\sum_{i=1}^{n} q_i(G + e) - \sum_{i=1}^{n} q_i(G) = 2$. Thus we obtain the following lemma immediately.
Lemma 2.2. Let G be a simple non complete graph with n vertices then $SLE(G) < SLE(G + e)$ and $SLEE(G) < SLEE(G + e)$

We note that the following result for Laplacian estrada index has been given in [1].

Theorem 2.3. G be a extremal graph of order n with vertex connectivity k and having the Signless Laplacian Energy SLE (the Signless Laplacian Estrada index $SLEE$) then G can be expressed as $K_k \lor (K_i \cup K_{n-k-i})$ for $1 \leq i \leq \frac{n-k}{2}$.

Proof. Let G be a (n,m) extremal graph with given vertex connectivity k. The result is clear for $k = n - 1$. Suppose that $1 \leq k \leq n - 2$, assume that G has the maximal Signless Laplacian Estrada index for all connected graphs of order n and vertex connectivity k. By hypothesis there exists a vertex cut set of order k, called it as U such that $G - U$ is disconnected. Let the connected components of $G - U$ be G_1, G_2, \ldots, G_r. Suppose that $r > 2$ then adding an edge between G_1 and G_2 will preserve the connectivity of G but increase the Laplacian Energy (Laplacian Estrada index) by Lemma 2.2 which gives a contradiction. Hence $r = 2$. Similarly it is true for all of $G[U]$, hence G_1 and G_2 are cliques and every vertex in U is adjacent to all vertices in G_1 and G_2 in the view of Lemma 2.2. Consequently G can be expressed as

$$K_k \lor (K_i \cup K_{n-k-i})$$

for $1 \leq i \leq \frac{n-k}{2}$.

This completes the proof. \hfill \Box

Recall that the first Zagreb index of a graph G [6], denoted by $M_1(G)$, is defined as the sum of the squares of the degrees of the graph G, that is $M_1(G) = \sum_{i=1}^{n} d_i^2$.

Theorem 2.4. Let G be a extremal graph of order n with vertex connectivity k then $SLE \leq \sqrt{n^2(n-1)(n-2) - 2(n-k-1)(n-2k-2) + nM_1(G)}$

Proof. From theorem 2.3 G can be written as

$$K_k \lor (K_i \cup K_{n-k-i})$$

for $1 \leq i \leq \frac{n-k}{2}$ and clearly G having $\frac{n(n-1)}{2} - i(n-k-i)$ edges, that is $2m = n(n-1) - 2i(n-k-i)$.

By Cauchy Schwarz inequality

$$\left(\sum_{i=1}^{n} x_i y_i \right)^2 \leq \sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2.$$
Replacing \(x_i = \left| q_i - \frac{2m}{n} \right|, y_i = 1 \), we obtain
\[
\left(\sum_{i=1}^{n} \left| q_i - \frac{2m}{n} \right| \right)^2 \leq n \sum_{i=1}^{n} \left(q_i - \frac{2m}{n} \right)^2
= n \left[2m + \sum_{i=1}^{n} d_i^2 - \frac{4m^2}{n} \right]
\]
Observe that
\[
[SLE(G)]^2 \leq n^2(n-1)(n-2) + 2ni(n-k-i) - 4i^2(n-k-i)^2 + nM_1(G)
\]
Let us consider
\[f(x) = 2nx(n-k-2x) - 4x^2(n-k-x)^2,\]
then clearly
\[f'(x) = 2n(n-k-2x) + 8x^2(n-k-x) - 8(n-k-x)^2 \leq 0\]
for \(1 \leq x \leq \frac{n-k}{2}\) with equality if and only if \(x = \frac{n-k}{2}\). Thus
\[
[SLE(G)]^2 \leq n^2(n-1)(n-2) + 2n(n-k-1) - 4(n-k-1)^2 + nM_1(G).
\]
Hence
\[
SLE \leq \sqrt{n^2(n-1)(n-2) - 2(n-k-1)(n-2k-2) + nM_1(G)}
\]

3 The Signless Laplacian Estrada index and connectivity

The spectrum is the list of distinct eigen values, let it be \(\lambda_1, \lambda_2, \ldots, \lambda_t \), of any matrix of order \(n \) with their multiplicities \(m_1, m_2, \ldots, m_t \) respectively such that \(m_1 + m_2 + \ldots + m_t = n \) and it is denoted by \((\lambda_1 \lambda_2 \ldots \lambda_t) \).

Theorem 3.1. Let \(G \) be a extremal graph of order \(n \) with vertex connectivity \(k \) then \(SLE \leq k e^{n-2} + (n-k-2)e^{n-3} + e^{2n+k-4} \)

Proof. From theorem 2.3 \(G \) can be expressed as
\[K_k \vee (K_i \cup K_{n-k-i})\]
for \(1 \leq i \leq \frac{n-k}{2}\) and clearly \(G \) having \(\frac{n(n-1)}{2} - i(n-k-i) \) edges. By an elementary computation we have, the Signless Laplacian eigen values(spectrum) of \(K_r \vee (K_s \cup K_t) \) are given as follows,
\[S[K_r \vee (K_s \cup K_t)] = \]
\[
\left(s + r + t - 2 \quad r + t - 2 \quad s + r - 2 \quad s + t - 2 + \frac{3r}{2} + \sqrt{T} \quad s + t - 2 + \frac{3r}{2} - \sqrt{T} \right)_{r \to t - 1 \quad s \to 1 \quad 1 \quad 1}
\]

where \(T = (|t - s| + \frac{t}{x})^2 + 2r \ min \{s, t\}. \)

Therefore the spectrum of the graph \(G \) is

\[
S(G) = \left(\begin{array}{cccc}
 n - 2 & n - i - 2 & i + k - 2 & n - 2 + \frac{k}{2} + \sqrt{T} \\
 k & n - k - i - 1 & i - 1 & 1 \\
 1 & 1 & 1 & 1
\end{array} \right)
\]

Now \(T = (|n - k - 2i| + \frac{k}{2})^2 + 2k \ min \{i, n - k - i\}. \) Hence

\[
SLEE = ke^{n - 2} + (n - k - i - 1)e^{n - i - 2} + (i - 1)e^{i + k - 2} + e^{n - 2 + \frac{k}{2} + \sqrt{T}} + e^{n - 2 + \frac{k}{2} - \sqrt{T}}
\]

\[
\leq ke^{n - 2} + (n - k - i - 1)e^{n - i - 2} + (i - 1)e^{i + k - 2} + e^{2n - 4 + k}
\]

Suppose

\[
g(x) = (n - k - x - 1)e^{n - x - 2} + (x - 1)e^{x + k - 2}
\]

It is clear that

\[
g'(x) = xe^{x + k - 2} - (n - k - x)e^{n - x - 2} \leq 0
\]

for \(1 \leq x \leq \frac{n - k}{2} \). Hence we obtain the required result

\[
SLEE \leq ke^{n - 2} + (n - k - 2)e^{n - 3} + e^{2n + k - 4}
\]

\[
\square
\]

For all non zero positive values of \(a \) and \(b \), both are not lies between 0 and 1, it is clear that \(e^a + e^b \leq e^{a+b} \). Since \(e^x \) is monotonically increases in \((0, \infty)\) As well known, \((i)\kappa(G) \leq \kappa'(G) \leq n - 1 \). Noting that \(K_k \cup (K_1 \cup K_{n-k-1}) \) has minimum degree \(k \) and edge connectivity \(k \) and the function \(ke^{n - 2} + (n - k - 2)e^{n - 3} + e^{2n + k - 4} \) is increasing with respect to \(k \). Thus the following corollaries immediately follows from Theorem 3.1.

Corollary 3.2. Let \(G \) be a extremal graph of order \(n \) with given edge connectivity \(k \). Then \(SLEE \leq ke^{n - 2} + (n - k - 2)e^{n - 3} + e^{2n + k - 4} \).

Corollary 3.3. Let \(G \) be a extremal graph with \(n \) vertices and minimum degree \(k \). Then \(SLEE \leq ke^{n - 2} + (n - k - 2)e^{n - 3} + e^{2n + k - 4} \).

References

Received: November 15, 2013