On the Rainbow Connection for Some Corona Graphs

Dewi Estetikasari

Graduate Program of Mathematics, Faculty of Mathematics and Natural Science Universitas Andalas, Kampus Unand Limau Manis, Padang, Indonesia, 25163 estetigue@yahoo.com

Syafrizal Sy

Department of Mathematics, Faculty of Mathematics and Natural Science Universitas Andalas, Kampus Unand Limau Manis, Padang, Indonesia, 25163 syafirizalsy@gmail.com/syafrizalsy@fmipa.unand.ac.id

Copyright © 2013 Dewi Estetikasari and Syafrizal Sy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is rainbow connected if there exists a rainbow path between every pair of vertices. The rainbow connectivity of a graph G, denoted by $rc(G)$ is the smallest number of colors required to edge color the graph such that the graph is rainbow connected.

In this note, we determine the exact values of $rc(G \circ H)$ where G or H are complete graph K_n, path P_n, tree T_n, or wheel W_n with n is an integer.

Mathematics Subject Classification: 05C15, 05C40

Keywords: Complete graph, path, rainbow connection, tree, wheel
1 Introduction

All graphs in this paper are finite, undirected, and simple. Connectivity is perhaps the most fundamental graph-theoretic property. There are many ways to strengthen the connectivity property, such as requiring hamiltonicity, k-connectivity, imposing bounds on the diameter, requiring the existence of edge-disjoint spanning trees, and so on.

A natural and interesting quantifiable way to strengthen the connectivity requirement was introduced by Chartrand et al. in [1]. An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. Thus, one can properly define the rainbow connection number of a connected graph G, denoted $rc(G)$, as the smallest number of colors that are needed in order to make G rainbow connected. Clearly that, if G has n vertices then $rc(G) < n$. Also notice that, clearly, $diam(G) \leq rc(G)$ where $diam(G)$ denotes the diameter of G.

If P is a path in G and $u, v \in V(P)$, then uPv denotes the unique sub-path of P with end vertices u and v. If $rc(uPv) = d(u, v)$ for every $u, v \in G$, then G is strongly rainbow-connected. The minimum number of color such that G is strongly rainbow connected is the strong rainbow connection number, denotes $src(G)$.

2 Preliminary Notes

The corona $G \circ H$ of two graphs G and H (where $|V(G)| = m$ and $|V(H)| = n$) is defined as the graph G obtained by taking one copy of G and m copies of H, called H_1, \ldots, H_m, and then joining by a line the i'th vertex of G to every vertex in the i'th copy of H. It follows from the definition of the corona that $G \circ H$ has $m(1 + n)$ vertices. Thus, $G \circ H \not\cong H \circ G$ for any two graph G and H.

Chartrand et al. [1] computed the precise rainbow connection number of several graph classes including complete graphs, trees, cycles, wheels.

Proposition 2.1 [1]
Let G be a nontrivial connected graphs. Then
(a) $src(G) = 1$ if and only if G is a complete graph,
(b) $rc(G) = 2$ if and only if $src(G) = 2$,
(c) $rc(G) = m - 1$ if and only if G is a tree with $|V(G)| = m$.

Proposition 2.2 [1]
For each integer $n > 4$, $rc(Cn) = src(Cn) = \lceil \frac{n}{2} \rceil$.
Proposition 2.3 [1]
For integer $n \geq 3$, the rainbow connection number of the wheel W_n is
\[
rc(W_n) = \begin{cases}
1, & n = 3; \\
2, & 4 \leq n \leq 6; \\
3, & n \geq 7.
\end{cases}
\]

Recently, Syafrizal Sy et al. [2] determined the exact values of Rainbow connection of fan and sun.

Theorem 2.4 [2] For integers $n, m \geq 2$, the rainbow connection number of the fan F_n is
\[
rc(F_n) = \begin{cases}
1 & \text{for } n = 2, \\
2 & \text{for } 3 \leq n \leq 6, \\
3 & \text{for } n \geq 7.
\end{cases}
\]

Corollary 2.5 [2] The rainbow connection number and strong rainbow connection number of a graph S_n for $n \geq 2$ are
\[
rc(S_n) = src(S_n) = \left\lfloor \frac{n}{2} \right\rfloor + n.
\]

3 Main Results

In this section, we determine the rainbow connection numbers of corona graphs for combination of some complete graphs and tree.

Theorem 3.1 Let G and H be any two connected graphs,
\[
rc(G \circ H) = \begin{cases}
1 & \text{for } (G \cong K_1 \text{ and } H \cong K_m), \\
2 & \text{for } G \cong K_1 \text{ and } H \cong P_m \text{ with } 3 \leq m \leq 6, \\
3 & \text{for } (G \cong K_1 \text{ and } H \cong P_m, m \geq 7) \text{ or } (G \cong P_2 \text{ and } H = K_m), m \geq 1.
\end{cases}
\]

Proof. We consider four cases.

Case 1. For $G \cong K_1$ and $H \cong K_m$.
Since $K_1 \circ K_m$ is a complete graph also, then by Proposition 2.1 (a), we have $rc(G \circ H) = 1$.

Case 2. For $G \cong K_1$ and $H \cong P_m$ with $3 \leq m \leq 6$.
By Theorem 2.4, we have $rc(G \circ H) = 2$.

Case 3. For $(G \cong K_1$ and $H \cong P_m, m \geq 7)$ or $(G \cong P_2$ and $H = K_m)$.
For $G \cong K_1$ and $H \cong P_m, m \geq 7$, by Theorem 2.4, we have $rc(G \circ H) = 3$.
Next, since $rc(P_2) = 1$ and $rc(K_m) = 1$ then clearly that $rc(P_2 \circ K_m) = 3$
where \(m \geq 1. \)

In the next theorem, we determine rainbow connection numbers of some corona graphs. For Case 3., a well-known class of graphs constructed from cycles are the wheels. For integer \(m \geq 3 \), suppose that \(W_m \) consists of an \(m \)-cycle \(C_m := v_1, v_2, \ldots, v_m, v_{m+1} = v_1 \) and another vertex \(v \) joined to every vertex of \(C_m \). A graph \(W_m \circ K_1 \) is defined as the graph obtained from a wheel \(W_m \) by adding \(m + 1 \) vertices and \(m + 1 \) pendant edges \(v_i v_{m+i} \) with \(v_{m+i} \) \((i = 1, \ldots, m)\) and \(vv_{2m+1} \).

Theorem 3.2 The rainbow connection number of corona graph \(G \circ H \) is

\[
rc(G \circ H) = \begin{cases}
 m + 1 & \text{for } (G \cong K_m \text{ and } H = K_1), \\
 2m - 1 & \text{for } G \cong T_m \text{ and } H \cong K_1, \\
 m + 3 & \text{for } G \cong W_m \text{ and } H \cong K_1, \\
 rc(G) + 3 & \text{for } |G| = m \geq 3 \text{ and } |H| = n \geq 2.
\end{cases}
\]

Proof. We consider four cases.

Case 1. For \(G \cong K_m \) and \(H = K_1 \).

By 2.1 (a), we have \(rc(K_m) = 1 \). By definition of corona graph \(K_m \circ K_1 \) and similarly to prove of rainbow connection number of sun \(rc(S_n) \), then we have \(rc(K_m \circ K_1) = m + 1 \).

Case 2. For \(G \cong T_m \) and \(H \cong K_1 \).

Clearly that, also \(T_m \circ K_1 \) is a tree. By definition of corona graph, the number of vertices in \(T_m \circ K_1 \) is \(2m - 1 \). Thus, by the Proposition 2.1 (c), we have \(rc(T_m \circ K_1) = 2m - 1 \).

Case 3. If \(G \cong W_m \) and \(H \cong K_1 \).

To show the upper bound, first we define the coloring of \(W_m \) as Proposition 2.2 [1]. Next, let \(E = \{v_i v_{m+i} | i = 1, \ldots, m\} \cup \{vv_{2m+1}\} \) be the set of pendant edges. If all edges of \(E \) be different colored as follow \(v_i v_{m+i} \in \{rc(W_m) + 1, \ldots, rc(W_m) + m\} \), then we have \(rc(W_m \circ K_1) \leq m + 3 \).

Now, we will show that \(rc(W_m \circ K_1) \geq m + 3 \). We assume to contrary that \(rc(W_m \circ K_1) \leq m + 2 \). Let \(c \) be a strong rainbow \((m + 2)\) coloring of \(W_m \circ K_1 \). Since \(rc(W_m \circ K_1) \leq m + 2 \) and \(W_m \circ K_1 \) contains \(m \) pendant edges then there are two vertices, namely \(x \) and \(y \), such that \(xy \) is not rainbow connection in \(W_m \circ K_1 \). Thus, \(rc(W_m \circ K_1) \geq m + 2 \).

Therefore, \(rc(W_m \circ K_1) = m + 3 \).
Case 4. For \(m \geq 3 \) and \(n \geq 2 \).

We will show that \(rc(G \circ H) \geq rc(G) + 3 \). Since \(G \) is a connected graph, then \(G \) has rainbow connection number. By definition of corona graph \(G \circ H \), we have \(m \) copies of \(H \), namely \(H_1, \ldots, H_i, \ldots, H_m \). Thus, for every vertex \(u \) in \(V(H_1) \) adjacent to the vertex \(x \) in \(V(G) \). Next, since \(H_1 \) is connected graph then there is a vertex \(v \) in \(V(H_1) \) such that \(uv \in E(H_1) \). Clearly that, also \(v \) adjacent to \(x \). Since \(G \) is a rainbow connected graph then for every two vertices in \(G \), there is the rainbow path \(P \) of \(G \). Without loss of generality, similarly cases for \(y, z \in V(G) \) with \(H_i \) and \(H_m \), see Fig. 1. Consider path \(uP_v \) with \(u \in V(H_1) \) and \(v \in V(H_m) \). We consider two possible. If the color of \(c(zv) \) is 2 then \(uP_v := u, x, \ldots, y, \ldots, z, v \) such that \(uP_z := u, x, \ldots, y, \ldots, z \) is a rainbow path. This implies, \(rc(uP_v) = rc(G) + 2 \). In the other case, if the color of \(c(zv) \) is 1 then \(uP_v := u, x, \ldots, y, \ldots, z, u, v \) has \(rc(uP_v) = rc(G) + 3 \). Since for every path \(P \) of \(G \) such that \(rc(G \circ H) \) rainbow connected, this implies \(rc(G \circ H) \geq rc(G) + 3 \).

Next, to show that \(rc(G \circ H) \leq rc(G) + 3 \), without loss of generality, we may only consider a connected subgraph with three vertices in \(H_i \), \(i \in \{1, \ldots, m\} \). Let \(H_i^* \) be a connected subgraph of \(H_i \) induced by \(\{u_i, v_i, w_i\} \) for every \(i = 1, \ldots, m \). Since \(H_i^* \) is a connected subgraph then \(H_i^* \) will form a path \(P_3 \) or a cycle \(C_3 \) in \(H_i \) for every \(i = 1, \ldots, m \). By definition of corona graph, every vertex in \(H_i^* \) adjacent to a vertex \(x \in V(G) \). Thus, \(H_i^* \cup \{x\} \) consist of paths \(P_3 \) (or cycles \(C_3 \)). Now, we define a rainbow 3-coloring \(c := E(C_3) \rightarrow \{1, 2, 3\} \) of \((\{x\} \circ H_i^*) \) such that no two edges are the colored the same. Obviously than, \(zP_x, z \in \{u_i, v_i, w_i\} \), is a rainbow path. Since \(G \) is a rainbow connected graph, then there is a vertex \(y \) such that \(zP_y \) is a rainbow path, see Fig. 2.

Next, we consider rainbow path \(zP_y \). Let \(H_j^* \) be a other connected subgraph of \(H_j \) induced by \(\{u_j, v_j, w_j\} \) for every \(j = 1, \ldots, m \). If \(c(zx) \neq c(yt) \) with
Figure 2: The illustration of $rc(G \circ H) \leq r(G) + 3$.

$t \in \{u_j, v_j, w_j\}$ then we have a rainbow path $z_x P_y t$. Conversely, if $c(zx) = c(yt)$ with $t \in \{u_j, v_j, w_j\}$, then by 3-coloring c we a rainbow path $z_x P_y t$. Therefore, $rc(G \circ H) \leq rc(G) + 3$. □

ACKNOWLEDGEMENTS. This research was partially supported by Department of Mathematics, Andalas University, Padang - West Sumatera.

References

Received: July 1, 2013