A Generalized Retarded Gronwall-like Inequalities

Gao Qingling 1 and Qiu Zhonghua 2

Department of Mathematics, Qilu Normal University
Shandong 250013, P.R. China

Copyright © 2013 Gao Qingling and Qiu Zhonghua. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we establish a generalized retarded integral inequality of Gronwall-like type. The results we obtained can be used as handy tools in discussing the behavior of differential equations and integral equations.

Keywords: inequality, differential equation, integral equation

1 Introduction

Recently, many authors have made researches on retarded integral inequalities and obtained plenteous results. In 2006, Olivia Lipovan gave the following inequalities:

Lemma 1.1. ([5],Theorem 1.1) Let $k \in C(R_+ , R_+)$, $\alpha \in C^1 (R_+ , R_+)$, $a \in C(R_+ \times R_+ , R_+)$ with $(t,s) \longmapsto \partial_t a(t,s) \in C(R_+ \times R_+ , R_+)$. Assume in addition that α is nondecreasing with $\alpha(t) \leq t$ for $t \geq 0$. If $u \in C(R_+ , R_+)$ satisfies

$$
u(t) \leq k(t) + \int_0^{\alpha(t)} a(t,s)u(s)ds, t \geq 0
$$

Then

$$
u(t) \leq k(t) + e^{\int_0^{\alpha(t)} a(t,s)ds} \int_0^t e^{-\int_0^{\alpha(r)} a(r,s)ds} \partial_t (\int_0^{\alpha(r)} a(r,s)k(s)ds)dr, t \geq 0.
$$

1wgb911@163.com
2qiuzh1001@163.com
Motivated by the works of Pachpatte [1] and Olivia Lipovan [5], the purpose of this paper is to discuss some more general integral inequalities.

2 Main Results

Throughout $R_0^+ = [0, \infty]$, $R^+ = (0, \infty)$, and we use the notion $\text{Dom}(f)$ to denote the domain of a function f.

Theorem 2.1. Let $a \in (R_0^+, R^+)$ and $\alpha \in C^1(R_0^+, R_0^+)$ be nondecreasing with $\alpha(t) \leq t$ on R_0^+, $f, g, h \in C(R_0^+, R_0^+)$. If $u \in C(R_0^+, R_0^+)$ satisfies

$$u(t) \leq a(t) + \int_0^t h(s)u(s)ds + \int_0^{\alpha(t)} f(s) \int_0^s g(\tau)u(\tau)d\tau ds, t \in R_0^+, \quad (1)$$

then we have

$$u(t) \leq a(t)exp(\int_0^t h(s)ds + \int_0^{\alpha(t)} f(s) \int_0^s g(\tau)d\tau ds), t \in R_0^+. \quad (2)$$

Proof. Since $a(t)$ is positive and nondecreasing, from (1) we have

$$\frac{u(t)}{a(t)} \leq 1 + \int_0^t h(s)\frac{u(s)}{a(t)}ds + \int_0^{\alpha(t)} f(s) \int_0^s g(\tau)\frac{u(\tau)}{a(t)}d\tau ds$$

$$\leq 1 + \int_0^t h(s)\frac{u(s)}{a(s)}ds + \int_0^{\alpha(t)} f(s) \int_0^s g(\tau)\frac{u(\tau)}{a(\tau)}d\tau ds$$

We define a function $z(t)$ on R_0^+ by

$$z(t) = 1 + \int_0^t h(s)\frac{u(s)}{a(s)}ds + \int_0^{\alpha(t)} f(s) \int_0^s g(\tau)\frac{u(\tau)}{a(\tau)}d\tau ds$$

Then $z(t)$ is positive and nondecreasing, $z(0) = 1$, $\frac{u(t)}{a(t)} \leq z(t), t \in R_0^+$ and

$$z'(t) = h(t)\frac{u(t)}{a(t)} + f(\alpha(t))\alpha'(t)\int_0^{\alpha(t)} g(s)\frac{u(s)}{a(s)}ds$$

$$\leq h(t)z(t) + f(\alpha(t))\alpha'(t)\int_0^{\alpha(t)} g(s)z(s)ds$$

$$\leq h(t)z(t) + f(\alpha(t))\alpha'(t)z(t)\int_0^{\alpha(t)} g(s)ds$$

i.e.

$$\frac{z'(t)}{z(t)} \leq h(t) + f(\alpha(t))\alpha'(t)\int_0^{\alpha(t)} g(s)ds$$
Integrating the above relation from 0 to t, we have
\[z(t) \leq z(0) \exp \left(\int_0^t h(s) \, ds + \int_0^{\alpha(t)} f(s) \, g(\tau) \, d\tau \, ds \right) \]
\[= \exp \left(\int_0^t h(s) \, ds + \int_0^{\alpha(t)} f(s) \, g(\tau) \, d\tau \, ds \right) \]

Since $\frac{u(t)}{u(t)} \leq z(t)$, we have
\[u(t) \leq a(t) \exp \left(\int_0^t h(s) \, ds + \int_0^{\alpha(t)} f(s) \, g(\tau) \, d\tau \, ds \right) \]

So the relation (2) is true.

Remark 1. Setting $\alpha(t) \equiv 0$ in Theorem 2.1, we obtain the well-known Gronwall-Bellman inequality [3,4].

Theorem 2.2. Let $f(t,s), g(t,s), h(t,s)$ be continuous on $(R_0^+ \times R_0^+, R_0^+)$ and nondecreasing in t for every s fixed. Moreover, let $a \in (R_0^+, R^+)$ and $\alpha \in C^1(R_0^+, R_0^+)$ be nondecreasing with $\alpha(t) \leq t$. If $u \in C(R_0^+, R_0^+)$ satisfies

\[u(t) \leq a(t) + \int_0^t h(t,s)u(s) \, ds + \int_0^{\alpha(t)} f(t,s)(u(s) + \int_0^s g(s,\tau)u(\tau) \, d\tau) \, ds, \quad t \in R_0^+, \tag{3} \]

then

\[u(t) \leq a(t) \exp \left(\int_0^t h(t,s) \, ds + \int_0^{\alpha(t)} f(t,s)(1 + \int_0^s g(s,\tau) \, d\tau) \, ds \right), \quad t \in R_0^+. \tag{4} \]

Proof. Letting $t = 0$ in (3), the result inequality (4) holds trivially. Fixing an arbitrary number $t_0 \in R_0^+$, we define a positive and nondecreasing function $z(t)$ by

\[z(t) = a(t_0) + \int_0^t h(t_0,s)u(s) \, ds + \int_0^{\alpha(t)} f(t_0,s)(u(s) + \int_0^s g(s,\tau)u(\tau) \, d\tau) \, ds. \]

Then $z(0) = a(t_0)$, $u(t) \leq z(t)$, $t \in [0,t_0]$. Since $\alpha(t) \leq t$, we have
\[
z'(t) = h(t_0,t)u(t) + f(t_0,\alpha(t))\alpha'(t)(u(\alpha(t)) + \int_0^{\alpha(t)} g(\alpha(t),s)u(s) \, ds)
\leq h(t_0,t)z(t) + f(t_0,\alpha(t))\alpha'(t)(z(\alpha(t)) + \int_0^{\alpha(t)} g(\alpha(t),s)z(s) \, ds)
\leq h(t_0,t)z(t) + f(t_0,\alpha(t))\alpha'(t)(z(t) + \int_0^{\alpha(t)} g(\alpha(t),s)z(s) \, ds) \]
\[
\leq h(t_0,t)z(t) + f(t_0,\alpha(t))\alpha'(t)(z(t) + \int_0^{\alpha(t)} g(\alpha(t),s)z(s) \, ds) \]

...
i.e.
\[
\frac{z'(t)}{z(t)} \leq h(t_0, t) + f(t_0, \alpha(t))\alpha'(t)(1 + \int_0^{\alpha(t)} g(\alpha(t), s)\,ds).
\]
Integrating the above relation on \([0, t_0]\) yields
\[
z(t_0) \leq z(0)\exp\left(\int_0^{t_0} h(t_0, s)\,ds + \int_0^{t_0} f(t_0, \alpha(s))\alpha'(s)(1 + \int_0^{\alpha(s)} g(\alpha(s), \tau)d\tau)\,d\tau\right).
\]
Since \(t_0\) is arbitrary, using \(u(t) \leq z(t)\) on \([0, t_0]\), then taking \(t = t_0\) on \(\mathbb{R}^+_0\), we get
\[
u(t) \leq a(t)\exp\left(\int_0^t h(t, s)\,ds + \int_0^t f(t, \alpha(s))\alpha'(s)(1 + \int_0^{\alpha(s)} g(\alpha(s), \tau)d\tau)\,d\tau\right)
= a(t)\exp\left(\int_0^t h(t, s)\,ds + \int_0^{\alpha(t)} f(t, s)(1 + \int_0^s g(s, \tau)d\tau)\,ds\right).
\]
So the result is true. \(\square\)

Remark 2. Let \(h(t, s) \equiv 0\) and \(g(t, s) \equiv 0\) in Theorem 2.2, If
\[
u(t) \leq a(t) + \int_0^{\alpha(t)} f(t, s)u(s)\,ds,
\]
holds, then the result is \(u(t) \leq a(t)\exp\int_0^{\alpha(t)} f(t, s)\,ds, t \in \mathbb{R}^+_0\).

Compared with the inequality discussed in Lemma 1.2, we obtain a conciser conclusion by different method. Moreover, if \(a(t) \equiv t\) in Remark 2, we obtain the Corollary 1.1 in paper [5].

Remark 3. Let \(f, a, \alpha\) be as in Theorem 2.2, \(h(t, s) \equiv 0\) and \(g(t, s) \equiv 0\). Suppose \(u \in \mathcal{C}(\mathbb{R}^+_0, \mathbb{R}^+_0)\) is a solution to integral equation
\[
u(t) = a(t) + \int_0^t h(t, s)u(s)\,ds + \int_0^{\alpha(t)} f(t, s)(u(s) + \int_0^s g(s, \tau)u(\tau)d\tau)\,d\tau, t \in \mathbb{R}^+_0.
\]
If
\[
\lim_{t \to \infty} \sup a(t) < \infty,
\]
and
\[
\int_0^t h(t, s)\,ds, \int_0^t f(t, s)\,ds, \int_0^t g(t, s)\,ds < \infty,
\]
then \(u\) is bounded.

Our result generalizes and improves the Corollary 1.2 in paper [5].
Theorem 2.3. Let $a \in (R^+_0, R^+)$ and $\alpha_i \in C^1(R^+_0, R^+_0)$ be nondecreasing with $\alpha_i(t) \leq t$ on R^+_0, $f_i, g_i, h \in C(R^+_0, R^+_0)$. If $u \in C(R^+_0, R^+_0)$ satisfies

$$u(t) \leq a(t) + \int_0^t h(s)u(s)ds + \sum_{i=1}^n \int_0^{\alpha_i(t)} f_i(s) \int_0^{\beta_i(s)} g_i(\tau)u(\tau)d\tau ds, t \in R^+_0, \quad (5)$$

then

$$u(t) \leq a(t) \exp \left(\int_0^t h(s)ds + \sum_{i=1}^n \int_0^{\alpha_i(t)} f_i(s) \int_0^{\beta_i(s)} g_i(\tau)d\tau ds\right), t \in R^+_0. \quad (6)$$

Theorem 2.4. Let $f_i(t, s), g_i(t, s), h(t, s)$ be continuous on $R^+_0 \times R^+_0$ and nondecreasing in t for every s fixed. Moreover, let $a \in (R^+_0, R^+)$ and $\alpha_i \in C^1(R^+_0, R^+_0)$ be nondecreasing with $\alpha_i(t) \leq t$. If $u \in C(R^+_0, R^+_0)$ satisfies

$$u(t) \leq a(t) + \int_0^t h(t, s)u(s)ds + \sum_{i=1}^n \int_0^{\alpha_i(t)} f_i(t, s)(u(s) + \int_0^{s} g_i(s, \tau)u(\tau)d\tau)ds, t \in R^+_0, \quad (7)$$

then

$$u(t) \leq a(t) \exp \left(\int_0^t h(t, s)ds + \sum_{i=1}^n \int_0^{\alpha_i(t)} f_i(t, s)(1 + \int_0^{s} g_i(s, \tau)d\tau)ds\right), t \in R^+_0. \quad (8)$$

Since the proof of Theorem 2.3 and Theorem 2.4 follows by the similar argument as in the proof of Theorem 2.1 and Theorem 2.2. We omit the details.

3 Some Applications

Corollary 1. Let function f, g, h, a, α be as in Theorem 2.1. Suppose $u \in C(R^+_0, R^+_0)$ is a solution to Volterra integral equation

$$u(t) = a(t) + \int_0^t h(s)u(s)ds + \int_0^{\alpha(t)} f(s) \int_0^{s} g(\tau)u(\tau)d\tau ds, t \in R^+_0.$$

If

$$\lim_{t \to \infty} \sup a(t) < \infty,$$

and

$$\int_0^{\alpha(\infty)} f(s)ds, \int_0^{\infty} g(s)ds, \int_0^{\infty} h(s)ds < \infty$$

Then u is bounded.
References

Received: July 11, 2013