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Abstract 
 
Our paper presents a new approach to mathematical modeling of intertemporal 
interactions between species based on differential equations. It employs the example of 
interactions between vampires and humans using several types of vampire behavior 
described in popular fiction literature, comic books, films and TV series. Although 
mathematical modeling enables us to reject most of the popular scenarios embedded in 
popular literature and films, it appears that several popular culture sources outline the 
models describing plausible and peaceful vampire and human co-existence. 
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1. Introduction: Dynamics of growth in human population 
 
Assume that the world’s population is to follow the exponential growth rate x(t), 
and by the end of 2011 (x1) reaches 7 billion people (t1). This dynamics (which  
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became a reality at the end of October 2011, when humanity reached the 7th 
billion) can be expressed by: dx/tx=kx                                                                  (1) 
where k represents the coefficient of the population growth.          
Using the method of division of variables we would arrive to the following 
solution: x(t) = x0 ek(t-to)                                                                                          (2) 
where x0 is the total volume of population at the initial time period t0. 
It seems logical to assume that the exponential phase in the growth of our planet’s 
population started at the moment the first civilizations formed themselves (i.e. the 
level of socialization allowed for the reproduction of the human species regardless 
the caprices of nature). It was scientifically proven that the first civilizations on 
Earth were those dating back to around 8000 B.C. (e.g. Egyptian, Sumerian, 
Assyrian, Babylonian, Helenian, Minoan, Indian and Chinese civilizations) 
(Edwards et al., 1971).  
 
According to Maddison (2006), 10 thousand years ago the population of Earth 
was about four million people. The initial conditions are formalized as follows: t0 
= -8000, x0 = 4 million people. The coefficient of the world’s population growth 
is: k = ln (x1/x0)/ t1- t0 = ln (1 + Try) = 7.46 · 10-4                                       (3) 

where Try is the annual growth rate of population (Figure 1). 
 
 
 
Figure 1: Exponential growth model of world’s population from the 8000 B.C. 
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A simple calculation of the annual growth rate of Earth’s population in 
accordance with this dynamics yields the number 0.075%.  This is 15 times less 
than the average population growth in 2010 (Kapitsa, 2010). 
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Figure 2: Logarithmic scale of Earth’s population growth 
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Figure 2 above depicts the logarithmic scale of the exponential dynamics and the 
actual dynamics built using the values of population growth starting from 8000 
B.C (McEvedy and Jones, 1978). It is obvious that there is some hidden factor 
preventing human population from the explosive growth.  
 
 
2. Vampires in the model of human population growth: predator-
prey model 
 
Consider introducing vampires into the model of population growth presented in 
(1). Vampires, the man’s natural predators, are often described in legends and 
folklore. The vampirical theme has found its way into research literature 
becoming the key topic for popular science articles and even several academic 
papers (see e.g. Hartl and Mehlmann, 1982; Hartl and Mehlmann, 1983, Hartl et 
al., 1992; or Efthimiou and Gandhi, 2007). 
The word “vampire” is considered to come from the Hungarian language where it 
is spelled “vampir”. In Slavic languages, the word “vampire” exists in a quite 
similar form in Russian, Polish, Czech, Serbian and Bulgarian languages and is 
thought to come from the old Greek root “pi” (which means “to drink”). The first 
myths and legends about vampires have probably existed since the dawn of 
human history. In the 19th century, ancient Mesopotamian texts dating back to 
4000 B.C. were translated into English revealing some mentioning of “seven 
spirits” that are very much like the description of vampires as we think of them 
today (Campbell Thompson, 1904). 
The fact that vampires constituted a threat to humans throughout the history of 
mankind (whether this threat was real or imaginary one) can be illustrated by the 
examples of recent archaeological findings at ancient burial sites where some 
human remains showed signs of being staked, strapped or gagged with a stone, a 
typical way to slay the vampire, as the legends have it (New Scientist, 2009). 
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Suppose the vampire population is denoted by the function y(t), y0=1. Vampires 
act as natural predators for humans. The human population dynamics can 
therefore be presented as the following function: dx/dt = kx – v(x)y                    (4) 
where the equation v(x) is the rate at which humans are killed by vampires.  
Assume that the number of any vampire’s victims is growing proportionally. 
Thence, the function v(x) can be presented as the following: v(x) = a · x            (5) 
where a>0 is the coefficient of the human’s lethal interaction with a vampire (a 
human is either killed by a vampire or is turned into a vampire).  
As a result, the differential equation describing the growth rate of human 
population can be formulated as the following: dx/dt = x(k-ay)                           (6) 
Assume the dynamics of vampire’s population change to be y(t). The growth of 
vampire population will be determined by the quality and quantity of interactions 
with humans. After selecting its victim, any vampire can kill it by simply draining 
its blood, turning it into a new vampire or feeding on it but leaving it to live. Let 
us also introduce vampire slayers into the model. The slayers regulate the 
population of vampires by periodically killing vampires. The equation will then be 
modified to look like as the following: dy/dt = baxy-cy                                       (7) 
where 0<b≤1 is the coefficient reflecting the rate with which humans are turned 
into vampires, c≥0 is the coefficient of lethal outcome of the interaction between a 
vampire and vampire slayer. 
Consider a Lotka-Volterra system (8). This system is classified as a “predator-
prey” type model (Volterra, 1931): 
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The system allows for the stationary solution, meaning that there is a pair of 
solutions for the system that creates a state when human and vampire populations can 
co-exist in time without any change in numbers. In order to find the solutions for 
these two populations, xs and ys, we have to solve the following system putting it 
equal to zero:  
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As a result, in the stationary case the initial system breaks down into two independent 
equations yielding the following parameters: 
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It is obvious from a stationary case that the size of human population is 
determined by the effectiveness of slaying vampires by vampire hunters c and the 
number of cases when the humans are turned into vampires ba. The size of 
vampire population depends on the growth rate of human population k and 
vampires’ thirst for human blood a. The stationary solution shows that when 
vampires are capable of restraining their blood thirst, the size of both populations  
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can be rather high in mutual co-existence. The system is held in balance by the 
existence of vampire slayers. 
The model described in (8) represents a system of ordinary differential equations 
which can be solved by using iterative numerical methods. The most widely-used 
ones are a family of the Range-Kutta methods (Butcher, 2008) that represent the 
modified and corrected Euler’s method with a higher degree of precision. The 
time-step algorithm includes the integration of differential equation from the 
initial to the final condition and computing the value of equation at the next step 
through the previous one. 
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The basic idea of the Runge-Kutta algorithms lies in substituting the function 
g(t,y) that depends on the unknown function y(t) by certain approximation. The 
more precise the approximation of the integral, the more accurately one can 
determine yi+1. Integrals can be approximated using either the rectangle method 
(2nd degree of precision) or Simpson’s rule of numerical approximation of definite 
integrals (3rd degree of precision).  The price one has to pay for the higher degree 
of precision would be the necessity to get the approximation of the integral in 
three points.  
Running numerous experimental calculations it was established that the best ratio 
of precision and the volume of calculations is yielded by the fourth-order Runge-
Kutta method. The formulae of calculations using the fourth-order Runge-Kutta 
method are presented below: 
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We employ the fourth-order Runge-Kutta method using the function rkfixed (V,a, 
b,n D) in order to solve the system described above [18]. The function has five 
arguments: V- the vector of initial values of the functions (border conditions), 
[a,b] - coordinates of the beginning and the end of the computation interval, n - 
the number of the network segments, D - the vector of the first derivatives of the 
system. The function rkfixed() yields a matrix consisting of (n+1) rows and three 
columns.  
 
 
 
3. Evaluating the possibility of vampires’ and humans’ co-
existence in the real world based on popular literature, comic 
books and films 
 
Starting from Bram Stoker’s “Dracula”, the theme of vampirism has been widely 
exploited by many authors: Anne Rice, Stephen King, Stephenie Meyer, Elizabeth 
Kostova or Charlaine Harris, just to name a few. In addition, vampires often 
appear in comic books and films and TV series based on these books (e.g. “Blade” 
or “Buffy the Vampire Slayer”). We reviewed popular literature, comic books, 
and films on vampires and identified five types of scenarios describing vampires 
and humans interactions. These scenarios were used to draw models of vampire-
human confrontation using the predator-prey model described and defined above.  

 
3.1. Scenario 1: The Stoker-King model 
 
Bram Stoker’s “Dracula” and Stephen King’s “’Salem’s Lot” describe 
interactions between vampires and humans in the following way: a vampire 
selects a human victim and gets into its proximity (it typically happens after dark 
and the vampire needs the victim to invite her/him in). Often the vampire does not 
require permission to enter the victim’s premises and attacks the sleeping victim 
(Stoker, 1897; McNally and Florescu, 1994). The vampire bites the victim and 
drinks the victim’s blood, then returns to feed for 4-5 consecutive days, 
whereupon the victim dies, is buried and rises to become another vampire (unless 
a wooden stake is put through its heart). Vampires usually need to feed every day, 
so more and more human beings are constantly turned into vampires (Stoker, 
1897; King, 1975). 
Assume the events described in “Dracula” were real. How would things evolve 
given the Stoker-King model dynamics described in both sources? Let us take 
1897 as the starting point (i.e. the year Stoker’s novel was first published). In 
1897, the world population was about 1 650 million people (UN, 1999). 
The initial conditions of the Stoker-King model are the following: 1 vampire, 1 
650 million people, there are no organized groups of vampire slayers. The date we 
choose for the first vampire has little bearing on our argument and therefore can 
be set arbitrarily. The model can be presented in a form of a diagram (Diagram 1). 
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Diagram 1: The Stoker-King model 

 
 
where H0 denotes humans and V denotes vampires, H0 is the initial state of 
human population, v0 is the initial state of vampire population and the aHV 
describes an interaction between a human and a vampire (with a as the coefficient 
of a lethal outcome for vampire-human interaction for humans). 
Let us calibrate the parameters of this specific (vampiric) case of predator-prey 
model. The calculation period is set at 1 year with a step of 5 days (t = 0…73). 
The coefficient of human population growth k for the given period is very small 
and can be neglected, therefore k=0. The coefficient of lethal outcome for humans 
interacting with vampires can be calculated according to the scenario presented in 
the Stoker-King model y0(t) = y0qt, where y0=1, q=2. The probability of a human 
being turned into a vampire is very high, thence b=1. Jonathan Harker and 
Abraham van Helsing could not be, by all means, considered very efficient 
vampire slayers, therefore we can put c=0. 
The resulting model is presented in a form of the following Cauchy problem: 
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Due to the fact that the total sum of humans and vampires does not change in time 
(human population does not grow and humans gradually become vampires), the 
predator-prey model is diminished to a simple problem of an epidemic outbreak 
(Munz et al., 2009). 
It can be assumed that for any moment t there holds an equality x(t)+y(t)=x0+y0, 
where x0=1.65·109. The system of differential equations can be presented in a 
form of a single differential equation: dy/dt = ax(t)y(t) = ay(t)[y0+x0-y(t)]       (14) 
with the initial condition y(0)= y0=1. 
This differential equation belongs to the class of logistic equations (e.g. the 
Verhulst equation that describes the growth of population). Let us solve the 
Cauchy problem for this equation: 
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By solving the problem above we get the following equation:  
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The equation clearly shows that with passing time the number of vampires grows 
and very soon there are no humans left: 00)(lim yxty
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The solution to this problem is presented below (Figure 3). It is clearly visible that 
the human population is drastically reduced by 80% by the 165th day from the 
moment when the first vampire arrives. This means that the human population 
reaches its critical value and practically becomes extinct (following the definitions 
of “Critically Endangered species” by the International Union for Conservation of 
Nature (see IUCN, 2012)).  At that precise moment, the world will be inhabited 
by 1 384 million vampires and 266 million people. 
 
 
 
Figure 3: The change in the numbers of humans and vampires in time (1 step = 5 
days) in the Stoker-King model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us observe the speed with which vampire population grows. In order to do 
that, an analysis of the following magnitude should be carried out: dy/dt. 
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The results are shown on Figure 4 that follows.  
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Figure 4: The change in vampires’ growth dynamics (1 step = 5 days) in Stoker-
King model 

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

1 10 8×

2 10 8×

3 10 8×

Time (step - 5 days)

Po
pu

la
tio

n 
G

ro
w

th

 
 
Figure 4 clearly shows that the growth of vampire population is extreme: at first, 
the number of vampires jumps up abruptly, but then slows down and declines.  
In order to determine the moment of time when the speed of vampire population’s 
growth reaches its maximal values, we need to take a look at the following 
magnitude: d2y/dt2 
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Figure 5 illustrates how that the speed of vampire population’s growth accelerates 
until the point denoted by tmax and then slows down.  
 
 
Figure 5: The change of speed of growth for vampire’s population (1 step = 5 
days) in the Stoker-King model 
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The maximal growth of the number of vampires (infected humans) will be 
observed in a moment of time tmax:  

                                         0
00

00
max )(

)/ln( t
xya
yxt +

+
=                                                   (19) 

where tmax= 153 is the day (153rd day) when the number of vampires is the 
highest, x(tmax)=825 million is the number of vampires in a moment of time tmax, 
x’(tmax)=286 million is the number of newly turned vampires in day tmax. 
Figure 6 shows the phase diagram of both populations. It is apparent that the 
increase in one population (vampires) inevitably leads to the decrease in another 
(humans). When the number of vampires reaches the number of human 
population, the humans disappear altogether. The presence of vampires in the 
Stoker–King model brings the mankind to the brink of extinction. 
The Stoker-King model describes the “explosive” growth of vampire population. 
Within the two months of Dracula’s arrival to England (or Kurt Barlow’s arrival 
to New England), there would have been 4 thousand vampires in operation. The 
model analyzed in this scenario is very similar to an epidemic outbreak caused by 
a deadly virus (e.g. Ebola or SARS). According to the Stoker-King model, 
vampires need just half a year to take up man’s place in nature. Therefore, the co-
existence of humans and vampires seems highly unrealistic. 
 
Figure 6: Phase diagram of vampire (z2) and human (z1) populations in the 
Stoker-King model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2. Scenario 2: The Rice model 
 
Anne Rice “Vampire Chronicles” describes the world with vampires, where 
vampires still need to feed on human beings (like in the Stoker-King model) but 
do so discretely (Rice, 1997). The vampire can attack a human being, feed on it 
and leave it to live. In some cases (if they are too hungry), vampires kill their 
victims by draining their blood. The vampire cannot easily turn the human into 
another vampire (in order to do so, the victim’s permission needs to be gained, it 
needs to drink some of vampire’s blood and the whole process is painful for both 
of them and takes several days, so it happens very rarely). Vampires do not need  
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to feed every day: some blood once a week or so is enough to survive. The initial 
conditions of the Rice model are the following: 2 vampires, 982 million people, 
there are no organized groups of vampire slayers (Diagram 2). 
 
Diagram 2: The Rice model 

 
 
where H denotes humans and V denotes vampires, H0 is the initial state of human 
population, kH denotes the exponential growth of human population, v0 is the 
initial state of vampire population, and aHV and baHV both describe interactions 
between a human and a vampire (with a as the coefficient of a lethal outcome for 
vampire-human interaction for humans and b as the coefficient describing the rate 
with which humans are turned into vampires). 
Assume the events described in “Vampire Chronicles” were real. How would 
things evolve given the Rice model dynamics described in her literary works? Let 
us take 1791 as a starting point (a year Lestat made Lui a vampire). In 1791, the 
world population was about 982 million people (UN, 1999).  
Let us calibrate the parameters of this specific predator-prey model. The 
calculation period is set to 100 years with a step of 7 days (t=0…5200). The 

coefficient of human population growth is calculated as 
01

01 )/ln(
tt
xxk

−
= where где 

x1=1520 million people at a moment of time t1=1891,  x0=982 million people at 
t0=1791.  Humans do not necessarily die or become vampires after their encounter 
with vampires, thence the coefficient of lethal outcome a  will be considerably 
lower than in the Stoker-King model and is therefore denoted as 0.1·a. The 
probability of a human turned into a vampire is quite low and can be denoted as 
b=0.1. There are no efficient groups of vampire slayers, therefore we can put c=0. 
The resulting simplified model is presented in a form of the following Cauchy 
problem: 
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The following system is solved using the Range-Kutta method. The results are 
presented in a graphical form on Figure 7 that follows.  
 
Figure 7: The change in the numbers of humans and vampires in time (1 step = 7 
days) in the Rice model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is apparent that in spite of the presence of vampires, the human population in 
the Rice model grows in the beginning. However, when the number of vampires 
reaches its critical mass, the human population starts to shrink and after 48.7 years 
is almost extinct. The number of vampires at this moment is equal to 100 million. 
Figure 8 depicts the phase diagram of the system. It shows a clear pattern: when 
the vampire population is small, the human population is growing at its natural 
rate of reproduction. However, when the number of vampires starts to rise, the 
human population is diminishing proportionally to the increase in vampire 
population. 
 
Figure 8: Phase diagram of vampire ( 2z ) and human ( 1z ) populations in the Rice 
model. 
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When compared to the Stoker-King model, the Rice model merely delays the total 
extinction of mankind. It is not possible to find equilibrium or stationary solution 
for this system. According to the Rice model, the co-existence of humans and 
vampires is possible for a short period of time. However, as time passes, all 
humans will be extinct or turned into vampires. Therefore, the co-existence of 
humans and vampires described by Anne Rice also seems unrealistic. 
 
 
3.3. Scenario 3: The Harris-Meyer-Kostova model 
 
In the books of Stephenie Meyer’s “Twilight series”, Charlaine Harris’s “Sookie 
Stockhouse (Southern Vampire) series”, “True Blood” (TV series) and Elizabeth 
Kostova’s “The Historian” there is a world drawn where vampires peacefully co-
exist with humans.  
For instance, in Stephenie Meyer’s “Twilight series” vampires can tolerate the 
sunlight, interact with humans (even fall in love with them) and drink animals’ 
blood to survive (Meyer, 2005). Of course, they have to live in secrecy and 
pretend to be human beings. In “True Blood” TV series, however, a world is 
shown where vampires and humans live side-by-side and are aware of each other. 
Vampires can buy synthetic blood of different blood types that is sold in bottles 
and can be bought in every grocery store, bar or gas station (Harris, 2001). They 
cannot walk during daytime, so they usually come out at night. Humans also find 
use of vampires’ essence – vampires’ blood (called “V”) is a powerful 
hallucinogenic drug that is sought by humans and traded on the black market 
(sometimes humans capture vampires with the help of silver chains or harnesses 
and then kill them by draining their blood). Some humans seek sex with vampires 
(vampires are stronger and faster than humans and can provide superb erotic 
experience). There is a possibility to turn a human being into a vampire, but it 
takes time and effort. 
In Elizabeth Kostova’s novel “The Historian”, vampires are rare although real and 
do not reveal themselves to humans too often. Their food ratios are limited and 
they spend lots of time brooding in their well-hidden tombs (Kostova, 2005). 
 “Sookie Stackhouse (Southern Vampire) Series” by Charlaine Harris comes with 
an interesting concept of vampires “coming out” in the 2000s: vampires have 
ultimately decided to reveal themselves to humans (a concept totally unacceptable 
in the works of Stephanie Meyer) and co-exist with them peacefully exerting their 
citizens’ rights (see e.g. Harris, 2001). Assume that at the time of the events 
described in the first book of the series, “Dead Until Dark” (2001), the world’s 
vampire hypothetical population was around five million (the population of the 
state of Louisiana in 2001 we arbitrarily use in our model). The initial conditions 
of the Harris-Meyer-Kostova model are the following: five million vampires, 6 
159 million people, there are organized groups of vampire “drainers”. The model 
can be presented in a form of a diagram (Diagram 3). 
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Diagram 3: The Harris-Meyer-Kostova model 
 

 
 
where H denotes humans, V denotes vampires and VS denotes vampire slayers. 
H0 is the initial state of human population, kH denotes the exponential growth of 
human population, v0 is the initial state of vampire population, aHV and baHV 
both describe interactions between a human and a vampire (with a as the 
coefficient of a lethal outcome for vampire-human interaction for humans and b as 
the coefficient describing the rate with which humans are turned into vampires) 
and cV denotes the death rate for vampires. 
Let us calibrate the parameters of this specific case of predator-prey model. The 
calculation period is set at 100 years with a step of 1 year (t=2001…2101). The 
coefficient of human population growth is calculated as 
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= where 70001 =x  million people at a moment of time t1=2012,  

x0=6150 million of people at time t0=2001. Humans almost always come out alive 
from their encounters with vampires, hence the coefficient of lethal outcome a 
will be low and is denoted by 0.01·a. The probability of a human being turned into 
a vampire is similar to the on in the Rice model and equals to b=0.1. There are 
numerous groups of vampire “drainers” (although the number of drained vampires 
is relatively low and would not lead to their total extinction), therefore we can put 
c>0 (c is calculated similarly to the coefficient k). The resulting model is 
presented in the initial set-up of predator-prey framework: 
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The model allows for a stationary solution: there are system parameters (xs, ys) 
that would stabilize the populations of humans and vampires in time. In order to 
find the stabilized populations of both spices, xs and ys, an equality described in 
(10) might be employed: (xs, ys) = (7704 8) million individuals. Figure 9 that 
follows shows the stationary solution presented on a logarithmic scale.  
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Figure 9: Figure with stationary solution presented on a logarithmic scale for the 
vampire (ys) and human (xs) populations in the Harris-Meyer-Kostova model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: The change in the number of humans in the Harris-Meyer-Kostova 
model (cyclical nature)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This stationary solution for 2001 cannot be found with the chosen population 
growth coefficient k  and can be reached applying some conditions only after 
2012. The deviations in the number of people and vampires from the stationary 
state at the initial period of time are quite small which points at the fact that the 
system might be stable and auto-cyclical. This is proved by the further 
calculations (Figures 10-11). 
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Figure 11: The change in the number of vampires in the Harris-Meyer-Kostova 
model (cyclical nature)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is apparent from Figures 10 and 11 that the human population will be growing 
until 2046 when it reaches its peak of 9.6 billion people, whereupon it will be 
declining until 2065 until it reaches its bottom at 6.12 billion people. This process 
will repeat itself continuously. The vampire population will be declining until 
2023 when it reaches its minimum of 289 thousand vampires, whereupon it will 
be growing until 2055 until it reaches its peak at 397 million vampires. This 
process will repeat itself continuously. Figure 12 shows the phase diagram of the 
cyclical system of human-vampire co-existence. 
 
Figure 12: Phase diagram of vampire (z2) and human (z1) populations in the 
Harris-Meyer-Kostova model 
 
 
 
 
 
 
 
 
 
 
 
 
 
Under certain conditions, the Harris-Meyer-Kostova model seems plausible and 
allows for the existence of vampires in our world. Peaceful co-existence of two 
spices is a reality. However, this symbiosis is very fragile and whenever the 
growth rate of human population slows down, the blood thirst of vampires 
accelerates, or vampire drainers become too greedy, the whole system lies in ruins 
with just one population remaining. 
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4. Conclusions 

 
It appears that although vampire-human interactions would in most cases lead to 
great imbalances in the ecosystems, there are several cases that might actually 
convey plausible models of co-existence between humans and vampires. 
In total, three different models were defined, calibrated and analyzed. The Stoker-
King model (based on Bram Stoker’s “Dracula” and Stephen King’s “’Salem’s 
Lot”) described the “explosive” rate of growth in vampire population that would 
lead to exterminating 80% of the human population on the 165th day of the first 
vampire’s arrival. The scenario is similar to severe epidemic outbreaks and would 
lead first to the complete extinction of humans and then to the death of all 
vampires. The Rice model (based on Anne Rice’s “Vampire Chronicles”) would 
merely delay the total extinction of mankind by vampires by 48 years with respect 
to the first model and therefore cannot be considered as realistic.  
Unlike the previous two, the Harris-Meyer-Kostova model (based on Charlaine 
Harris’s “Southern Vampire Series”, Stephenie Meyer’s “Twilight saga” and 
Elizabeth Kostova’s “The Historian”) allows for the peaceful (and totally 
unnoticeable) existence of vampires in our world. However, the system is very 
fragile and some coordination is required to keep things in balance. 
Overall, although mathematical principles enabled us to doubt the realism of 
many human and vampire encounters described in the literature, several sources 
provide what might be an acceptable description of the situation in which 
vampires and humans co-exist in a world that is very similar to the one we live in. 
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