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Abstract 

 
The paper deals with modelling of a finite single-server queueing system with a 
server subject to breakdowns. Customers interarrival times and customers service 
times follow the Erlang distribution defined by the shape parameter k=2 and the 
scale parameter 2λ or 2μ respectively. The paper demonstrates two modifications 
of the queueing system. In both cases we consider that server failures can occur 
when the server is busy (operate-dependent failures). Further we assume that 
service of a customer is interrupted by the occurrence of the server failure (the 
preemptive-repeat discipline) or the system empties when the server is broken (the 
failure-empty discipline). We assume that random variables relevant to server 
failures and repairs are exponentially distributed. Both modifications are modelled 
using method of stages. For each modification we present the state transition 
diagram, the system of linear equations describing the system behavior in the 
steady state and the formulas for several performance measures computation. At 
the end of the paper some graphical dependencies are shown. 
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1 Introduction 
 

Queueing systems represent a lot of practical systems we can find in 
technical practice, such as manufacturing, computer and telecommunication or 
transport systems. As we can see in many books devoted to the queueing theory, 
such as the books [6] or [8], in most common queueing models we often neglect  
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the fact that a server is subject to failures. However in technical practice we often 
must not forget this fact because server failures can adversely affect performance 
measures of a studied queueing system. Therefore we are obliged to model the 
system as the unreliable queueing system in which the server is successively 
failure-free and broken. 

First works devoted to the mathematical modelling of unreliable queueing 
systems were published almost 50 years ago. We can mention for example the 
papers written by Avi-Itzhak B, Naor P [4] or Mitrani IL, Avi-Itzhak B [18]. A 
single-server queueing system subject to breakdowns is studied in the first paper; 
five modifications of the studied system are considered. The authors considered 
the Poisson stream of incoming customers and generally distributed service times. 
In the second paper an unreliable multi-server queueing system is introduced with 
exponentially distributed interarrival times and service times. A multi-server 
queue with servers subject to breakdowns was examined by Neuts MF, Lucantoni 
DM [19] as well. 

As regards papers written during last 20 years many papers can be found. 
Lam Y et al. [14] modelled a single-server queue with a repairable server under 
the assumption of the Poisson arrival process and exponentially distributed service 
times. Tang YH [23] published the paper devoted to unreliable single-server 
queue as well, but with generally distributed service times. Sharma KC, Sirohi A 
[20] modelled a container unloader as a finite single-server queue with repairable 
server. Unreliable single-server queues were also considered in papers of Gray WJ 
et al. [10], Madan KC [16] or Ke J-C [13]. 

Moreover, Martin SP, Mitrani I [17] studied a system with several 
unreliable servers placed in parallel. Wang K-H, Chang Y-C [25] considered a 
finite multi-server queue with balking, reneging and server breakdowns.  

Some authors studied queues with repairable servers placed in series. 
Almasi B, Sztrik J [2] investigated a closed queueing network model with three 
service stations; the authors assumed that all times are exponentially distributed. 
A model of several machines in series and subject to breakdowns was considered 
by Bihan HL, Dallery Y [5] under the assumption of finite buffers and 
deterministic service times. 

Further group of unreliable queuing models are created by retrial queues. 
Wang J, Zhou P-F [24] considered a single-server retrial queue with batch Poisson 
arrival process, generally distributed service times and server failures upon 
customer arrival. Li Q-L et al. [15] studied single-server retrial queue as well. 
Unreliable retrial queues subject to breakdowns were introduced for example by 
Aissani A, Artalejo, JR [1], Sztrik J et al. [22], Jianghua L, Jinting W [12], 
Atencia I et al. [3] or Gupur G [11]. 

An interesting group of unreliable queueing systems are formed by queues 
with so-called negative customers or disasters (or catastrophes). Disasters can 
represent server failures which cause removing either some or all customers 
finding in the system. We can for example mention the papers written by Boxma 
OJ et al. [7] or Shin YW [21].              
 On the basis of the short review mentioned above we can see that most of the 
authors especially studied unreliable queueing systems under the assumptions of  
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the exponential or general distribution. Most of the mentioned authors further 
assumed that a queue of waiting customers has an infinity capacity, if the queue of 
waiting customers is formed. 

In the paper we will pay our attention to mathematical models of two 
modifications of a finite single-server queueing system with the server subject to 
breakdowns, where customers interarrival times and service times will follow the 
Erlang distribution. Further we will assume that overall busy times until 
breakdown occurrence and repair times will abide by the exponential distribution. 
The presented queueing models can be applied to modelling some real systems 
which appear from technical practice; in many practical situations we need to 
model an unreliable queue with a finite capacity. Further the assumptions about 
exponential inter-arrival times and service times do not often hold, therefore we 
have to apply other probability distributions. The Erlang distribution offers us 
greater variability of usage than the exponential distribution, nevertheless 
mathematical models of queueing systems in which we assume the Erlang 
distribution are still relatively easily solvable. Even though we will consider only 
the two-phase Erlang distribution (k=2), our models can be easily extended for 
k>2.     
 The paper is organized as follows. In Section 2 we will make necessary 
assumptions and introduce our modifications of the studied queueing system. In 
Sections 3 and 4 we will present the mathematical models for individual 
modifications; each modification is described by the state transition diagram and 
the finite system of the linear equations from which we are able to compute the 
stationary probabilities. The stationary probabilities of individual states of the 
system we need in order to obtain some performance measures. Section 5 is 
devoted to the executed numerical experiments and in Section 6 we make some 
conclusions. Please notice that the model described in Section 3 was previously 
published in paper [9] but because we would like to compare outcomes of both 
modifications we show the model once again. 
 
 
2 General assumptions and notation 
 

Let us assume a single server queueing system consisting of a server and a 
queue. The queue has a finite capacity equal to m, where m>1. That means there 
are in total m places for customers in the system – single place in the service and 
m-1 places intended for waiting of customers. Let us assume that customers are 
served one by one according to the FCFS service discipline. 

Customers interarrival times follow the Erlang distribution with the shape 
parameter k=2 and the scale parameter 2λ; therefore the mean interarrival time is 

then equal to 
λλ
1

2
2

= . Costumer service times are an Erlang random variable 

with the shape parameter k=2 as well, but with the scale parameter 2μ; thus the 

mean service time is equal to 
μμ
1

2
2

= . The value of the shape parameter we  
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assume equal to 2 in order to not complicate mathematical models. However we 
hope that on the basis of the paper the presented models can be easily extended 
for greater values of the shape parameter.   

Let us assume that the server is successively failure-free (or available we 
can say) and broken. We assume that failures of the server can occur when the 
server is busy – we say that server failures are operate-dependent. Let us assume 
that times of overall server working until the breakdown occurrence are an 
exponential random variable with the parameter η; the mean time of overall server 
working until the breakdown occurrence is then equal to the reciprocal value of 
the parameter η. Times to repair are an exponential random variable as well, but 

with the parameter ξ; the mean time to repair is therefore equal to 
ξ
1 . 

As regards behaviour of customers at the moment of the failure, we will 
consider two cases. In the first case we assume that the performed service of 
operated customer is lost, the customer leaves the server and comes back to the 
queue if it is possible; otherwise it leaves the system and is rejected. Let us denote 
this case as preemptive-repeat mode. In the second case the system empties after 
every failure of the server; the system is empty when the server is down. We will 
call this case as failure-empty mode. It is clear that we get two modifications of 
the system.  
In order to model both modifications of the system we will apply so called method 
of stages. The method exploits the fact that the Erlang distribution with the shape 
parameter k and the scale parameter denoted as kλ or kμ is sum of k independent 
exponential distribution with the same parameter kλ or kμ. Therefore both 
queueing systems can be modelled using Markov chains theory. 
 
3 Mathematical model of the preemptive-repeat modification 
  

The first step that has to be done is to describe individual states of the 
system. States of the first modification can be divided into two groups: 

• The failure-free states are denoted by the notation k,v,o, where: 
o k represents the number of customers finding in the system, 

where { }mk ,...,1,0∈ , 
o v represents the terminated phase of customer arrival, where 

{ }1,0∈v , 
o o represents the terminated phase of customer service, where 

{ }1,0∈o . 
• The states in which the server is broken are denoted by the notation 

Pk,v, where: 
o The letter P expresses failure of the server, 
o k represents the number of customers finding in the system, 

where { }1,...,1,0 −∈ mk , 
o v represents the terminated phase of customer arrival, where 

{ }1,0∈v . 
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Let us illustrate a state transition diagram; the diagram is shown in Fig. 1. 
Vertices represent individual system states and oriented edges indicate possible 
transitions with the corresponding rate. 

 

 
Fig. 1 The state transition diagram of the preemptive-repeat modification 

 
The finite system of linear equations describing the behaviour of the 

system in the steady state is: 

 1,0,10,0,0 22 PP μλ = , (1) 

 1,1,10,0,00,1,0 222 PPP μλλ += , (2) 

 ( ) 0,0,11,0,1 222 PP μημλ =++ , (3) 

 ( ) 0,1,1,0,1,1, 2222 kkk PPP μλημλ +=++  for mk ,...,2,1= , (4) 

 ( ) 0,1,0,10,1,10,0, 2222 Pkkkk PPPP ξμλημλ ++=++ +−  for 1,...,2,1 −= mk , (5) 

 ( ) 1,1,1,10,0,0,1, 2222 Pkkkk PPPP ξμλημλ ++=++ +  for 1,...,2,1 −= mk , (6) 

 ( ) 0,0,1,1,11,0, 2222 kkk PPP μλημλ +=++ −  for 1,...,3,2 −= mk , (7) 
 ( ) 0,0,1,1,1,1,11,0, 22222 mmmm PPPP μλλημλ ++=++ − , (8) 

 ( ) 0,1,0,1,10,0, 2222 mmm PPP λλημλ +=++ − , (9) 

 ( ) 0,0,0,1, 222 mm PP λημλ =++ , (10) 

 ( ) 0,0,11,0,10,12 PPPP ηηξλ +=+ , (11)  

 ( ) 0,0,1,1,1,1, 22 PkkkPk PPPP ληηξλ ++=+  for 2,...,2,1 −= mk , (12) 

 ( ) ( ) 1,10,0,1,0,0, 22 −++=+ kPkkPk PPPP ληηξλ  for 2...,3,2 −= mk , (13) 

 ( ) ( ) ++++=+ −−− 0,0,1,0,0,0,11,0,10,12 mmmmmP PPPPP ηηηηξλ  
 ( ) ( ) 1,11,2 22 −− ++ mPmP PP λλ  , (14) 

 ( ) ( ) ( ) 0,10,1,1,1,0,1,11,1,11,1 22 −−−− ++++=+ mPmmmmmP PPPPPP ληηηηξλ  (15) 
including normalization equation: 

  1
1

1

1

0
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1
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0
,,0,1,00,0,0 =+++ ∑∑∑∑∑

−

= == = =
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m

k v o
ovk PPPP . (16) 

Please notice that equation (15) is linear combination of equations (1) up  
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to (14), therefore we omit equation (15) and replace it by normalization equation 
(16). By solving of linear equation system formed from equations (1) – (14), (16) 
we get stationary probabilities of the particular system states that are needed for 
computing of performance measures. 

Let us consider three performance measures – the mean number of the 
customers in the service ES, the mean number of the waiting customers EL and 
the mean number of the broken servers EP. All of them can be computed 
according to the formula for the mean value of discrete random variable, where 
the random variable { }1,0∈S  is the number of costumers in the service, 

{ }1,0 −∈ mL  the number of waiting customers and { }1,0∈P  the number of 
broken servers. For the mean number of the costumers in the service ES we can 
write: 

 

 
∑∑∑
= = =

=
m

k v o
ovkPES

1

1

0

1

0
,, , (17) 

 
the mean number of the waiting costumers EL can be expressed by formula: 
 

 
( ) ∑∑∑ ∑∑

=

−

== = =

+−=
1

0
,

1

12

1

0

1

0
,,1

v
vPk

m

k

m

k v o
ovk PkPkEL , (18) 

 
and for the mean number of broken servers EP we get: 
 

 
∑∑
−

= =

=
1

1

1

0
,

m

k v
vPkPEP . (19) 

 
 
 
4 Mathematical model of the failure-empty modification 
 

Let us divide the states of the modifications into two groups: 
• The failure-free system states are denoted by notation k,v,o, where 

representation of particular symbols is the same as in the first model. 
• The states in which the server is broken are denoted by notation P0,v, 

where: 
o the mark P0 expresses the fact that the server is broken and 

empty, 
o v represents the terminated phase of the customer arrival, 

where { }1,0∈v . 
 

In Fig. 2 the state transition diagram is shown. 
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Fig. 2 The state transition diagram of the failure-empty modification 
  
 
Corresponding finite system of linear equations is in the form:  

 0,01,0,10,0,0 22 PPPP ξμλ += , (20) 

 1,01,1,10,0,00,1,0 222 PPPPP ξμλλ ++= , (21) 

 ( ) 0,0,11,0,1 222 PP μημλ =++ , (22) 

 ( ) 0,1,1,0,1,1, 2222 kkk PPP μλημλ +=++  for mk ,...,2,1= , (23) 

 ( ) 1,0,10,1,10,0, 2222 +− +=++ kkk PPP μλημλ  for 1,...,2,1 −= mk , (24) 

 ( ) 1,1,10,0,0,1, 2222 ++=++ kkk PPP μλημλ  for 1,...,2,1 −= mk , (25) 

 ( ) 0,0,1,1,11,0, 2222 kkk PPP μλημλ +=++ −  for 1,...,3,2 −= mk , (26) 
 ( ) 0,0,1,1,1,1,11,0, 22222 mmmm PPPP μλλημλ ++=++ − , (27) 

 ( ) 0,1,0,1,10,0, 2222 mmm PPP λλημλ +=++ − , (28) 

 ( ) 0,0,0,1, 222 mm PP λημλ =++ , (29) 

 
( ) 1,0

1

1

0
,0,0,0 22 P

m

k o
okP PPP ληξλ +=+ ∑∑

= =

, (30) 

 ( ) 0,0
1

1

0
,1,1,0 22 P

m

k o
okP PPP ληξλ +=+ ∑∑

= =

 (31) 

including normalization equation: 

 
11,00,0

1

1

0

1

0
,,0,1,00,0,0 =++++ ∑∑∑

= = =
PP

m

k v o
ovk PPPPP . (32) 

By solution of linear equation system formed from equations (20) – (30) 
and (32) the probabilities of particular system states in the steady state are 
obtained. For the mean number of the costumers in the service ES we get: 
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=
m
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,, , (33) 

for the mean number of waiting customers EL it can be written: 
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( )∑ ∑∑

= = =

−=
m

k v o
ovkPkEL

2

1

0

1

0
,,1 , (34) 

and finally the mean number of servers in failure EP can be expressed by formula: 

 1,00,0 PP PPEP += . (35) 
 
 
5 Executed numerical experiments 
 

Let us consider the studied queueing system with 5 places in the system. In 
Tab. 1 the values of applied random variables parameters are summarized. 

 
Tab. 1: Applied random variables parameters 

Random variable (RV) Applied parameters of RV 
Interarrival times – Erlang RV k=2; 2λ = 18 h-1 

Service times – Erlang RV k=2; 2μ = 20 h-1 

Times of failure-free state – exponential RV η=200-1; 190-1;…, 20-1; 10-1 h-1 

Times to repair – exponential RV ξ=0.2 h-1 

 
For each modification and each value of the parameter η the stationary 

probabilities were computed numerically using software Matlab. On the basis of 
stationary probabilities knowledge we are able to compute the performance 
measures according to the corresponding formulas. Let us focus our attention on 
the performance measures ES, EL and EP. The dependencies of individual 
performance measures on the reciprocal value of the parameter η are shown in 
Figs. 3, 4 and 5. 
 
 

 
Fig. 3 The dependence of ES on parameter 1/η 

 
As we can see in Fig. 3, increasing value of parameter η (or decreasing 

value of the reciprocal value of parameter η) causes decreasing of the mean  
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number of customers in the system ES for both modifications. This fact could be 
logically expected because more frequent failures mean lower fraction of time in 
which the server is able to serve incoming customers. 

 

 
Fig. 4 The dependence of EL on parameter 1/η 

 
In Fig. 4 we can see two different dependencies. For the 1st modification 

the mean number of waiting customers EL increases with decreasing reciprocal 
value of η because waiting of customers is prolonged due to more frequent 
failures. On the other hand, for the 2nd modification the dependency is decreasing 
due to the fact that the system empties when the server is broken. 

 
Fig. 5 The dependence of EP on parameter 1/η 

  
In Fig. 5 we can see that for both modifications the dependency of the 

performance measure EP is increasing. This fact is obvious as well. 
 
6 Conclusions 
 
In this paper we paid attention to two modifications of the finite E2/E2/1/m queue  
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with the server subject to breakdown. We considered that server failures are 
operate-dependent. We distinguished two different modes differing in behaviour 
of customers. The preemptive-repeat mode means that performed service of a 
customer operated at the moment of a server failure is lost and the customer either 
goes back to the queue or is rejected when the queue is full. By the empty-failure 
mode we mean that the system is empty while the server is being repaired, 
therefore all customers are rejected when the server is down.  

For these modifications we developed the state transition diagrams and 
wrote the systems of linear equations for the steady state. The stationary 
probabilities can be numerically computed, for example, by using software Matlab. 
When we know the probabilities we are able to compute several performance 
measures we are interested in. Further we presented some numerical experiments 
executed with both modifications; on the basis of them we got some graphical 
dependencies of the selected performance measures on the reciprocal value of the 
parameter 1/η. 

In the future we would like to find the formula for the customers loss 
probability, because this performance measures is often very important for finite 
queueing systems. The other goal of our research is to generalize the model for 
values of the shape parameter k≥2.             
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